Comparative study of two re-embedding methods on the ultrastructure of corneal tissue

Related Research units

Abstract

PURPOSE: To expand the routine of pathological diagnostics of surgical keratoplasty specimens via transmission electron microscopy. The target was to identify the best re-embedding method for optimal structural preservation of formalin fixed paraffin embedded (FFPE) corneal tissue re-embedded into resin for ultrastructural analysis.

BASIC PROCEDURES: Bovine FFPE corneal tissue was re-embedded into resin with either a rapid osmium-free four-hour-method or a four-day-routine-method known from nephropathology, compared with primary resin embedded bovine corneal tissue. The analysis involved the ultrastructure of cytoplasm, the intercellular interfaces of superficial epithelial cells, deepest basal epithelial cells and corneal endothelial cells, cell matrix interfaces, Bowman layer, corneal stroma, its microfibril bundles and Descemet membrane.

MAIN FINDINGS: The main observation was the equally reduced preservation status of re-embedded FFPE corneal tissue independent of the used re-embedding method. This extends to the intercellular contacts of superficial epithelial cells and the apical tight junctions of corneal endothelial cells. Hemidesmosomal cell matrix contacts showed less demarcation in re-embedded specimens. Cell matrix interfaces of Bowman layer and Descemet membrane were more clearly bordered in primary resin embedded than re-embedded tissue. In contrast, gap junctions in re-embedded tissue were detected in deepest basal epithelial cells and corneal endothelial cells with comparable preservation to primary resin embedding. Bowman layer, corneal stromal extracellular matrix, its microfibril bundles and Descemet membrane showed equal ultrastructural preservation in all evaluated methods.

PRINCIPAL CONCLUSION: Corneal tissue can be successfully analysed with transmission electron microscopy after a rapid osmium-free four hour re-embedding procedure from FFPE material. A comparable morphology with primary resin embedded material can be obtained for gap junctions of deepest basal epithelial cells and corneal endothelial cells, further for Bowman layer, corneal stromal extracellular matrix, its microfibril bundles and Descemet membrane.

Bibliographical data

Original languageEnglish
ISSN0940-9602
DOIs
Publication statusPublished - 01.2023

Comment Deanary

Copyright © 2022 Elsevier GmbH. All rights reserved.

PubMed 36195291