Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials

Standard

Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials. / Rolvien, Tim; Barbeck, Mike; Wenisch, Sabine; Amling, Michael; Krause, Matthias.

In: INT J MOL SCI, Vol. 19, No. 10, 23.09.2018, p. 2893.

Research output: SCORING: Contribution to journalSCORING: Review articleResearch

Harvard

APA

Vancouver

Bibtex

@article{d16e79f61e354b88ac532fffd4dc5cfe,
title = "Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials",
abstract = "Bone grafts, i.e., autologous, allogeneic or synthetic bone substitute materials play an increasing role in reconstructive orthopedic surgery. While the indications and materials differ, it is important to understand the cellular mechanisms regarding their integration and remodeling, which are discussed in this review article. Osteoconductivity describes the new bone growth on the graft, while osteoinductivity represents the differentiation of undifferentiated cells into bone forming osteoblasts. The best case is that both mechanisms are accompanied by osteogenesis, i.e., bone modeling and remodeling of the graft material. Graft incorporation is mediated by a number of molecular pathways that signal the differentiation and activity of osteoblasts and osteoclasts (e.g., parathyroid hormone (PTH) and receptor activator of nuclear factor κβ ligand (RANKL), respectively). Direct contact of the graft and host bone as well as the presence of a mechanical load are a prerequisite for the successful function of bone grafts. Interestingly, while bone substitutes show good to excellent clinical outcomes, their histological incorporation has certain limits that are not yet completely understood. For instance, clinical studies have shown contrasting results regarding the complete or incomplete resorption and remodeling of allografts and synthetic grafts. In this context, a foreign body response can lead to complete material degradation via phagocytosis, however it may also cause a fibrotic reaction to the bone substitute. Finally, the success of bone graft incorporation is also limited by other factors, including the bone remodeling capacities of the host, the material itself (e.g., inadequate resorption, toxicity) and the surgical technique or preparation of the graft.",
keywords = "Journal Article, Review",
author = "Tim Rolvien and Mike Barbeck and Sabine Wenisch and Michael Amling and Matthias Krause",
year = "2018",
month = sep,
day = "23",
doi = "10.3390/ijms19102893",
language = "English",
volume = "19",
pages = "2893",
journal = "INT J MOL SCI",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "10",

}

RIS

TY - JOUR

T1 - Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials

AU - Rolvien, Tim

AU - Barbeck, Mike

AU - Wenisch, Sabine

AU - Amling, Michael

AU - Krause, Matthias

PY - 2018/9/23

Y1 - 2018/9/23

N2 - Bone grafts, i.e., autologous, allogeneic or synthetic bone substitute materials play an increasing role in reconstructive orthopedic surgery. While the indications and materials differ, it is important to understand the cellular mechanisms regarding their integration and remodeling, which are discussed in this review article. Osteoconductivity describes the new bone growth on the graft, while osteoinductivity represents the differentiation of undifferentiated cells into bone forming osteoblasts. The best case is that both mechanisms are accompanied by osteogenesis, i.e., bone modeling and remodeling of the graft material. Graft incorporation is mediated by a number of molecular pathways that signal the differentiation and activity of osteoblasts and osteoclasts (e.g., parathyroid hormone (PTH) and receptor activator of nuclear factor κβ ligand (RANKL), respectively). Direct contact of the graft and host bone as well as the presence of a mechanical load are a prerequisite for the successful function of bone grafts. Interestingly, while bone substitutes show good to excellent clinical outcomes, their histological incorporation has certain limits that are not yet completely understood. For instance, clinical studies have shown contrasting results regarding the complete or incomplete resorption and remodeling of allografts and synthetic grafts. In this context, a foreign body response can lead to complete material degradation via phagocytosis, however it may also cause a fibrotic reaction to the bone substitute. Finally, the success of bone graft incorporation is also limited by other factors, including the bone remodeling capacities of the host, the material itself (e.g., inadequate resorption, toxicity) and the surgical technique or preparation of the graft.

AB - Bone grafts, i.e., autologous, allogeneic or synthetic bone substitute materials play an increasing role in reconstructive orthopedic surgery. While the indications and materials differ, it is important to understand the cellular mechanisms regarding their integration and remodeling, which are discussed in this review article. Osteoconductivity describes the new bone growth on the graft, while osteoinductivity represents the differentiation of undifferentiated cells into bone forming osteoblasts. The best case is that both mechanisms are accompanied by osteogenesis, i.e., bone modeling and remodeling of the graft material. Graft incorporation is mediated by a number of molecular pathways that signal the differentiation and activity of osteoblasts and osteoclasts (e.g., parathyroid hormone (PTH) and receptor activator of nuclear factor κβ ligand (RANKL), respectively). Direct contact of the graft and host bone as well as the presence of a mechanical load are a prerequisite for the successful function of bone grafts. Interestingly, while bone substitutes show good to excellent clinical outcomes, their histological incorporation has certain limits that are not yet completely understood. For instance, clinical studies have shown contrasting results regarding the complete or incomplete resorption and remodeling of allografts and synthetic grafts. In this context, a foreign body response can lead to complete material degradation via phagocytosis, however it may also cause a fibrotic reaction to the bone substitute. Finally, the success of bone graft incorporation is also limited by other factors, including the bone remodeling capacities of the host, the material itself (e.g., inadequate resorption, toxicity) and the surgical technique or preparation of the graft.

KW - Journal Article

KW - Review

U2 - 10.3390/ijms19102893

DO - 10.3390/ijms19102893

M3 - SCORING: Review article

C2 - 30249051

VL - 19

SP - 2893

JO - INT J MOL SCI

JF - INT J MOL SCI

SN - 1661-6596

IS - 10

ER -