Caspase-3-associated apoptotic cell death in excitotoxic necrosis of the entorhinal cortex following intraperitoneal injection of kainic acid in the rat

Related Research units

Abstract

The present study is directed to study: (a) bax translocation and cytochrome c release as mediators of the mitochondrial pathway of apoptosis; (b) Fas-L (Fas-ligand) expression as an indicator of the possible involvement of the Fas/Fas-L signaling pathway; and (c) active caspase-3 expression as the main executioner of caspase-mediated apoptosis, in rats receiving an intraperitoneal injection of the glutamate analogue kainic acid (KA) at a dose of 9 mg/kg, which is sufficient to produce generalized seizures and excitotoxic cell death in the entorhinal cortex. Sub-fractionation studies of entorhinal cortex homogenates have shown cytochrome c and cytochrome oxidase IV localized in the mitochondrial fraction, and Bax localized in the cytosolic fraction. No modifications in the sub-cellular distribution of cytochrome c and Bax have been observed at 6 h and 24 h in KA-treated rats. Morphological studies have shown cytoplasmic shrinkage and nuclear condensation consistent with necrosis in the entorhinal cortex. Many neurons (about 30% of dying cells) are stained with the method of in situ end-labeling of nuclear DNA fragmentation. Yet only about 5% of dying cells have apoptotic morphology. A percentage of dying cells (5% at 6 h and 40% at 24 h) over-express Fas-L but only about 2% of dying cells at 24 h post-injection express cleaved caspase-3 (17 kD). The present data further support the concept that necrosis is the predominant form of cell death in the entorhinal cortex, although caspase-3-dependent apoptotic cell death may play a limited role, in the present paradigm of KA-induced excitotoxicity.

Bibliographical data

Original languageEnglish
ISSN0304-3940
Publication statusPublished - 22.03.2002
PubMed 11880202