Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy

Standard

Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy. / Krause, M; Keller, J; Beil, B; van Driel, I; Zustin, J; Barvencik, F; Schinke, T; Amling, M.

In: OSTEOPOROSIS INT, Vol. 26, No. 3, 03.2015, p. 987-95.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{5d3649c8f2024eb294e535b5ffab18d6,
title = "Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy",
abstract = "UNLABELLED: We demonstrate histological evidence for hyperparathyroidism in patients with gastrectomy. This is, at least in part, explained by impaired calcium absorption, resulting in mineralization defects and secondary hyperparathyroidism. Additionally, we demonstrate improved bone mineralization in patients with gastrectomy after gluconate therapy and showed the effectiveness of calcium gluconate over carbonate to balance impaired calcium hemostasis in mice.INTRODUCTION: Gastrectomy and hypochlorhydria due to long-term proton pump inhibitor therapy are associated with increased fracture risk because of intestinal calcium malabsorption. Hence, our objectives were to histologically investigate bone metabolism in patients with gastrectomy and to analyze the impact of calcium gluconate supplementation on skeletal integrity in the setting of impaired gastric acidification.METHODS: Undecalcified bone biopsies of 26 gastrectomized individuals were histologically analyzed. In the clinical setting, we retrospectively identified 5 gastrectomized patients with sufficient vitamin D level, who were additionally supplemented with calcium gluconate and had a real bone mineral density (aBMD) follow-up assessments. A mouse model of achlorhydria (ATP4b-/-) was used to compare the effect of calcium gluconate and calcium carbonate supplementation on bone metabolism.RESULTS: Biopsies from gastrectomized individuals showed significantly increased osteoid, osteoclast, and osteoblast indices and fibroosteoclasia (p < 0.05) as well as impaired calcium distribution in mineralized bone matrix compared to healthy controls. Five gastrectomized patients with sufficient vitamin D level demonstrated a significant increase in aBMD after a treatment with calcium gluconate alone for at least 6 months (p < 0.05). Calcium gluconate was superior to calcium carbonate in maintaining calcium metabolism in a mouse model of achlorhydria.CONCLUSION: Gastrectomy is associated with severe osteomalacia, marrow fibrosis, and impaired calcium distribution within the mineralized matrix. We show that calcium gluconate supplementation can increase bone mineral density in gastrectomized individuals and performs superior to calcium carbonate in restoring calcium/skeletal homoeostasis in a mouse model of achlorhydria.",
author = "M Krause and J Keller and B Beil and {van Driel}, I and J Zustin and F Barvencik and T Schinke and M Amling",
year = "2015",
month = mar,
doi = "10.1007/s00198-014-2965-1",
language = "English",
volume = "26",
pages = "987--95",
journal = "OSTEOPOROSIS INT",
issn = "0937-941X",
publisher = "Springer London",
number = "3",

}

RIS

TY - JOUR

T1 - Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy

AU - Krause, M

AU - Keller, J

AU - Beil, B

AU - van Driel, I

AU - Zustin, J

AU - Barvencik, F

AU - Schinke, T

AU - Amling, M

PY - 2015/3

Y1 - 2015/3

N2 - UNLABELLED: We demonstrate histological evidence for hyperparathyroidism in patients with gastrectomy. This is, at least in part, explained by impaired calcium absorption, resulting in mineralization defects and secondary hyperparathyroidism. Additionally, we demonstrate improved bone mineralization in patients with gastrectomy after gluconate therapy and showed the effectiveness of calcium gluconate over carbonate to balance impaired calcium hemostasis in mice.INTRODUCTION: Gastrectomy and hypochlorhydria due to long-term proton pump inhibitor therapy are associated with increased fracture risk because of intestinal calcium malabsorption. Hence, our objectives were to histologically investigate bone metabolism in patients with gastrectomy and to analyze the impact of calcium gluconate supplementation on skeletal integrity in the setting of impaired gastric acidification.METHODS: Undecalcified bone biopsies of 26 gastrectomized individuals were histologically analyzed. In the clinical setting, we retrospectively identified 5 gastrectomized patients with sufficient vitamin D level, who were additionally supplemented with calcium gluconate and had a real bone mineral density (aBMD) follow-up assessments. A mouse model of achlorhydria (ATP4b-/-) was used to compare the effect of calcium gluconate and calcium carbonate supplementation on bone metabolism.RESULTS: Biopsies from gastrectomized individuals showed significantly increased osteoid, osteoclast, and osteoblast indices and fibroosteoclasia (p < 0.05) as well as impaired calcium distribution in mineralized bone matrix compared to healthy controls. Five gastrectomized patients with sufficient vitamin D level demonstrated a significant increase in aBMD after a treatment with calcium gluconate alone for at least 6 months (p < 0.05). Calcium gluconate was superior to calcium carbonate in maintaining calcium metabolism in a mouse model of achlorhydria.CONCLUSION: Gastrectomy is associated with severe osteomalacia, marrow fibrosis, and impaired calcium distribution within the mineralized matrix. We show that calcium gluconate supplementation can increase bone mineral density in gastrectomized individuals and performs superior to calcium carbonate in restoring calcium/skeletal homoeostasis in a mouse model of achlorhydria.

AB - UNLABELLED: We demonstrate histological evidence for hyperparathyroidism in patients with gastrectomy. This is, at least in part, explained by impaired calcium absorption, resulting in mineralization defects and secondary hyperparathyroidism. Additionally, we demonstrate improved bone mineralization in patients with gastrectomy after gluconate therapy and showed the effectiveness of calcium gluconate over carbonate to balance impaired calcium hemostasis in mice.INTRODUCTION: Gastrectomy and hypochlorhydria due to long-term proton pump inhibitor therapy are associated with increased fracture risk because of intestinal calcium malabsorption. Hence, our objectives were to histologically investigate bone metabolism in patients with gastrectomy and to analyze the impact of calcium gluconate supplementation on skeletal integrity in the setting of impaired gastric acidification.METHODS: Undecalcified bone biopsies of 26 gastrectomized individuals were histologically analyzed. In the clinical setting, we retrospectively identified 5 gastrectomized patients with sufficient vitamin D level, who were additionally supplemented with calcium gluconate and had a real bone mineral density (aBMD) follow-up assessments. A mouse model of achlorhydria (ATP4b-/-) was used to compare the effect of calcium gluconate and calcium carbonate supplementation on bone metabolism.RESULTS: Biopsies from gastrectomized individuals showed significantly increased osteoid, osteoclast, and osteoblast indices and fibroosteoclasia (p < 0.05) as well as impaired calcium distribution in mineralized bone matrix compared to healthy controls. Five gastrectomized patients with sufficient vitamin D level demonstrated a significant increase in aBMD after a treatment with calcium gluconate alone for at least 6 months (p < 0.05). Calcium gluconate was superior to calcium carbonate in maintaining calcium metabolism in a mouse model of achlorhydria.CONCLUSION: Gastrectomy is associated with severe osteomalacia, marrow fibrosis, and impaired calcium distribution within the mineralized matrix. We show that calcium gluconate supplementation can increase bone mineral density in gastrectomized individuals and performs superior to calcium carbonate in restoring calcium/skeletal homoeostasis in a mouse model of achlorhydria.

U2 - 10.1007/s00198-014-2965-1

DO - 10.1007/s00198-014-2965-1

M3 - SCORING: Journal article

C2 - 25391248

VL - 26

SP - 987

EP - 995

JO - OSTEOPOROSIS INT

JF - OSTEOPOROSIS INT

SN - 0937-941X

IS - 3

ER -