Bone microarchitecture of the distal fibula assessed by HR-pQCT

Standard

Bone microarchitecture of the distal fibula assessed by HR-pQCT. / Stürznickel, Julian; Schmidt, Felix N; Schäfer, Hannah S; Beil, Frank Timo; Frosch, Karl-Heinz; Schlickewei, Carsten; Amling, Michael; Barg, Alexej; Rolvien, Tim.

In: BONE, Vol. 151, 116057, 10.2021.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{ebdaea07f85b4337a5447220e4be6f60,
title = "Bone microarchitecture of the distal fibula assessed by HR-pQCT",
abstract = "The distal fibula represents one of the most common fracture sites, and its epidemiology is characterized by a high incidence in both adolescence and the elderly. While fracture occurrence is influenced by trauma mechanism, a possible underlying skeletal microarchitectural deterioration in certain patient groups remains elusive. The purpose of this study was to determine the influence of age, sex, and overall skeletal status on fibular microarchitecture. We analyzed the microarchitecture of the distal fibula in 300 people by high-resolution peripheral quantitative computed tomography (HR-pQCT). Three areal bone mineral density (aBMD) groups (normal, osteopenia, osteoporosis; n = 100 per group) based on the concurrent assessment of aBMD by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and total hip were established. Next to group comparisons, linear and non-linear regression analyses were carried out to assess the association between age, sex, BMI, tibial and fibular microarchitecture. While women had lower values for both trabecular bone volume fraction (BV/TVd, p < 0.001) and cortical thickness (Ct.Thd, p < 0.001) than men, osteoporosis by DXA negatively affected these parameters in both sexes. Remarkably, cortical but not trabecular microarchitecture declined with age, with a stronger decrease in females compared to males (Ct.Thd female -10.0 μm/year (95% CI: -12.2 to -7.7 μm/year), male -4.0 μm/year (95% CI: -6.3 to -1.7 μm/year)). Moderate positive associations between distal tibial and fibular microarchitecture were noted (e.g., BV/TVd R2 = 0.54, Ct.Thd R2 = 0.58). In summary, we here demonstrate the severe negative effects of age, female sex and osteoporosis on distal fibula bone mineralization and microarchitecture. The presented findings are likely to explain the higher susceptibility to distal fibula fractures in elderly women (independent of trauma mechanism). These alterations in fibular bone quality must be taken into account in the context of fracture prevention and treatment (e.g., osteosynthesis planning).",
author = "Julian St{\"u}rznickel and Schmidt, {Felix N} and Sch{\"a}fer, {Hannah S} and Beil, {Frank Timo} and Karl-Heinz Frosch and Carsten Schlickewei and Michael Amling and Alexej Barg and Tim Rolvien",
note = "Copyright {\textcopyright} 2021 Elsevier Inc. All rights reserved.",
year = "2021",
month = oct,
doi = "10.1016/j.bone.2021.116057",
language = "English",
volume = "151",
journal = "BONE",
issn = "8756-3282",
publisher = "Elsevier Inc.",

}

RIS

TY - JOUR

T1 - Bone microarchitecture of the distal fibula assessed by HR-pQCT

AU - Stürznickel, Julian

AU - Schmidt, Felix N

AU - Schäfer, Hannah S

AU - Beil, Frank Timo

AU - Frosch, Karl-Heinz

AU - Schlickewei, Carsten

AU - Amling, Michael

AU - Barg, Alexej

AU - Rolvien, Tim

N1 - Copyright © 2021 Elsevier Inc. All rights reserved.

PY - 2021/10

Y1 - 2021/10

N2 - The distal fibula represents one of the most common fracture sites, and its epidemiology is characterized by a high incidence in both adolescence and the elderly. While fracture occurrence is influenced by trauma mechanism, a possible underlying skeletal microarchitectural deterioration in certain patient groups remains elusive. The purpose of this study was to determine the influence of age, sex, and overall skeletal status on fibular microarchitecture. We analyzed the microarchitecture of the distal fibula in 300 people by high-resolution peripheral quantitative computed tomography (HR-pQCT). Three areal bone mineral density (aBMD) groups (normal, osteopenia, osteoporosis; n = 100 per group) based on the concurrent assessment of aBMD by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and total hip were established. Next to group comparisons, linear and non-linear regression analyses were carried out to assess the association between age, sex, BMI, tibial and fibular microarchitecture. While women had lower values for both trabecular bone volume fraction (BV/TVd, p < 0.001) and cortical thickness (Ct.Thd, p < 0.001) than men, osteoporosis by DXA negatively affected these parameters in both sexes. Remarkably, cortical but not trabecular microarchitecture declined with age, with a stronger decrease in females compared to males (Ct.Thd female -10.0 μm/year (95% CI: -12.2 to -7.7 μm/year), male -4.0 μm/year (95% CI: -6.3 to -1.7 μm/year)). Moderate positive associations between distal tibial and fibular microarchitecture were noted (e.g., BV/TVd R2 = 0.54, Ct.Thd R2 = 0.58). In summary, we here demonstrate the severe negative effects of age, female sex and osteoporosis on distal fibula bone mineralization and microarchitecture. The presented findings are likely to explain the higher susceptibility to distal fibula fractures in elderly women (independent of trauma mechanism). These alterations in fibular bone quality must be taken into account in the context of fracture prevention and treatment (e.g., osteosynthesis planning).

AB - The distal fibula represents one of the most common fracture sites, and its epidemiology is characterized by a high incidence in both adolescence and the elderly. While fracture occurrence is influenced by trauma mechanism, a possible underlying skeletal microarchitectural deterioration in certain patient groups remains elusive. The purpose of this study was to determine the influence of age, sex, and overall skeletal status on fibular microarchitecture. We analyzed the microarchitecture of the distal fibula in 300 people by high-resolution peripheral quantitative computed tomography (HR-pQCT). Three areal bone mineral density (aBMD) groups (normal, osteopenia, osteoporosis; n = 100 per group) based on the concurrent assessment of aBMD by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and total hip were established. Next to group comparisons, linear and non-linear regression analyses were carried out to assess the association between age, sex, BMI, tibial and fibular microarchitecture. While women had lower values for both trabecular bone volume fraction (BV/TVd, p < 0.001) and cortical thickness (Ct.Thd, p < 0.001) than men, osteoporosis by DXA negatively affected these parameters in both sexes. Remarkably, cortical but not trabecular microarchitecture declined with age, with a stronger decrease in females compared to males (Ct.Thd female -10.0 μm/year (95% CI: -12.2 to -7.7 μm/year), male -4.0 μm/year (95% CI: -6.3 to -1.7 μm/year)). Moderate positive associations between distal tibial and fibular microarchitecture were noted (e.g., BV/TVd R2 = 0.54, Ct.Thd R2 = 0.58). In summary, we here demonstrate the severe negative effects of age, female sex and osteoporosis on distal fibula bone mineralization and microarchitecture. The presented findings are likely to explain the higher susceptibility to distal fibula fractures in elderly women (independent of trauma mechanism). These alterations in fibular bone quality must be taken into account in the context of fracture prevention and treatment (e.g., osteosynthesis planning).

U2 - 10.1016/j.bone.2021.116057

DO - 10.1016/j.bone.2021.116057

M3 - SCORING: Journal article

C2 - 34139389

VL - 151

JO - BONE

JF - BONE

SN - 8756-3282

M1 - 116057

ER -