Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder

Standard

Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder. / Wiehler, A; Chakroun, K; Peters, J.

In: J NEUROSCI, Vol. 41, No. 11, 17.03.2021, p. 2512-2522.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{0d9f1fa14db749c3bf9813e54f4f1581,
title = "Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder",
abstract = "Gambling disorder (GD) is a behavioral addiction associated with impairments in value-based decision-making and behavioral flexibility and might be linked to changes in the dopamine system. Maximizing long-term rewards requires a flexible trade-off between the exploitation of known options and the exploration of novel options for information gain. This exploration-exploitation trade-off is thought to depend on dopamine neurotransmission. We hypothesized that human gamblers would show a reduction in directed (uncertainty-based) exploration, accompanied by changes in brain activity in a fronto-parietal exploration-related network. Twenty-three frequent, non-treatment seeking gamblers and twenty-three healthy matched controls (all male) performed a four-armed bandit task during functional magnetic resonance imaging (fMRI). Computational modeling using hierarchical Bayesian parameter estimation revealed signatures of directed exploration, random exploration, and perseveration in both groups. Gamblers showed a reduction in directed exploration, whereas random exploration and perseveration were similar between groups. Neuroimaging revealed no evidence for group differences in neural representations of basic task variables (expected value, prediction errors). Our hypothesis of reduced frontal pole (FP) recruitment in gamblers was not supported. Exploratory analyses showed that during directed exploration, gamblers showed reduced parietal cortex and substantia-nigra/ventral-tegmental-area activity. Cross-validated classification analyses revealed that connectivity in an exploration-related network was predictive of group status, suggesting that connectivity patterns might be more predictive of problem gambling than univariate effects. Findings reveal specific reductions of strategic exploration in gamblers that might be linked to altered processing in a fronto-parietal network and/or changes in dopamine neurotransmission implicated in GD.SIGNIFICANCE STATEMENT Wiehler et al. (2021) report that gamblers rely less on the strategic exploration of unknown, but potentially better rewards during reward learning. This is reflected in a related network of brain activity. Parameters of this network can be used to predict the presence of problem gambling behavior in participants.",
author = "A Wiehler and K Chakroun and J Peters",
note = "Copyright {\textcopyright} 2021 the authors.",
year = "2021",
month = mar,
day = "17",
doi = "10.1523/JNEUROSCI.1607-20.2021",
language = "English",
volume = "41",
pages = "2512--2522",
journal = "J NEUROSCI",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "11",

}

RIS

TY - JOUR

T1 - Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder

AU - Wiehler, A

AU - Chakroun, K

AU - Peters, J

N1 - Copyright © 2021 the authors.

PY - 2021/3/17

Y1 - 2021/3/17

N2 - Gambling disorder (GD) is a behavioral addiction associated with impairments in value-based decision-making and behavioral flexibility and might be linked to changes in the dopamine system. Maximizing long-term rewards requires a flexible trade-off between the exploitation of known options and the exploration of novel options for information gain. This exploration-exploitation trade-off is thought to depend on dopamine neurotransmission. We hypothesized that human gamblers would show a reduction in directed (uncertainty-based) exploration, accompanied by changes in brain activity in a fronto-parietal exploration-related network. Twenty-three frequent, non-treatment seeking gamblers and twenty-three healthy matched controls (all male) performed a four-armed bandit task during functional magnetic resonance imaging (fMRI). Computational modeling using hierarchical Bayesian parameter estimation revealed signatures of directed exploration, random exploration, and perseveration in both groups. Gamblers showed a reduction in directed exploration, whereas random exploration and perseveration were similar between groups. Neuroimaging revealed no evidence for group differences in neural representations of basic task variables (expected value, prediction errors). Our hypothesis of reduced frontal pole (FP) recruitment in gamblers was not supported. Exploratory analyses showed that during directed exploration, gamblers showed reduced parietal cortex and substantia-nigra/ventral-tegmental-area activity. Cross-validated classification analyses revealed that connectivity in an exploration-related network was predictive of group status, suggesting that connectivity patterns might be more predictive of problem gambling than univariate effects. Findings reveal specific reductions of strategic exploration in gamblers that might be linked to altered processing in a fronto-parietal network and/or changes in dopamine neurotransmission implicated in GD.SIGNIFICANCE STATEMENT Wiehler et al. (2021) report that gamblers rely less on the strategic exploration of unknown, but potentially better rewards during reward learning. This is reflected in a related network of brain activity. Parameters of this network can be used to predict the presence of problem gambling behavior in participants.

AB - Gambling disorder (GD) is a behavioral addiction associated with impairments in value-based decision-making and behavioral flexibility and might be linked to changes in the dopamine system. Maximizing long-term rewards requires a flexible trade-off between the exploitation of known options and the exploration of novel options for information gain. This exploration-exploitation trade-off is thought to depend on dopamine neurotransmission. We hypothesized that human gamblers would show a reduction in directed (uncertainty-based) exploration, accompanied by changes in brain activity in a fronto-parietal exploration-related network. Twenty-three frequent, non-treatment seeking gamblers and twenty-three healthy matched controls (all male) performed a four-armed bandit task during functional magnetic resonance imaging (fMRI). Computational modeling using hierarchical Bayesian parameter estimation revealed signatures of directed exploration, random exploration, and perseveration in both groups. Gamblers showed a reduction in directed exploration, whereas random exploration and perseveration were similar between groups. Neuroimaging revealed no evidence for group differences in neural representations of basic task variables (expected value, prediction errors). Our hypothesis of reduced frontal pole (FP) recruitment in gamblers was not supported. Exploratory analyses showed that during directed exploration, gamblers showed reduced parietal cortex and substantia-nigra/ventral-tegmental-area activity. Cross-validated classification analyses revealed that connectivity in an exploration-related network was predictive of group status, suggesting that connectivity patterns might be more predictive of problem gambling than univariate effects. Findings reveal specific reductions of strategic exploration in gamblers that might be linked to altered processing in a fronto-parietal network and/or changes in dopamine neurotransmission implicated in GD.SIGNIFICANCE STATEMENT Wiehler et al. (2021) report that gamblers rely less on the strategic exploration of unknown, but potentially better rewards during reward learning. This is reflected in a related network of brain activity. Parameters of this network can be used to predict the presence of problem gambling behavior in participants.

U2 - 10.1523/JNEUROSCI.1607-20.2021

DO - 10.1523/JNEUROSCI.1607-20.2021

M3 - SCORING: Journal article

C2 - 33531415

VL - 41

SP - 2512

EP - 2522

JO - J NEUROSCI

JF - J NEUROSCI

SN - 0270-6474

IS - 11

ER -