Assessment of left ventricular function parameters with a new three-dimensional shape model.

Standard

Assessment of left ventricular function parameters with a new three-dimensional shape model. / Bansmann, P M; Sénégas, J; Müllerleile, Kai; Lund, Gunnar; Kemper, J; Adam, Gerhard; Stork, A.

In: ROFO-FORTSCHR RONTG, Vol. 181, No. 2, 2, 2009, p. 161-168.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{0159a0312c194671a4421edce571e353,
title = "Assessment of left ventricular function parameters with a new three-dimensional shape model.",
abstract = "PURPOSE: To evaluate a 3D model of the left ventricle (LV) which allows calculation of LV function parameters on the basis of both short axis (SA) and long axis (LA) cine acquisitions. Comparison with the conventional Simpson's rule method in a volunteer and patient collective. MATERIALS AND METHODS: Cine imaging was performed with a prospectively triggered SSFP sequence: trueFISP: TR 3.6 msec, TE 1.8 msec, bFFE: TR 3.0 msec, TE 1.4 msec, flip angle 60 degrees , resolution 1.37 x 1.37 mm, slice thickness 8 mm, gap 2 mm in SA orientation from apex to basis and in radial LA orientation (spacing 15 degrees) in 11 volunteers and 27 patients with mitral valve insufficiency. Five different volume computations were compared: Simpson's rule based on all SA slices (M0), 3D shape model based on all SA slices (M1a), 3D shape model based on 3 SA slices (M1b), 3D shape model based on all SA and LA slices (M2a), and 3D shape model based on 3 SA slices and 1 LA slice (M2b). RESULTS: M 0 and M 1a give similar results (r: 0.99, b: 0.98). M 2a produces larger volumes than M 0 (b: 0.85) due to the inclusion of the LA contours. M 1b effectively reproduces the volumes computed with M 0 (r: 0.99, b: 1.02). M 2b effectively reproduces the volumes computed with M 2a (r: 0.99, b: 0.94). M 2b and M 0 give similar results in the patient collective (r: 0.99, b: 0.97). CONCLUSION: The proposed 3D shape model allows merging of information acquired in different orientations and thus the combination of SA and LA contours with better coverage of the left ventricle. It provides a suitable fit with a reduced number of segmented contours.",
author = "Bansmann, {P M} and J S{\'e}n{\'e}gas and Kai M{\"u}llerleile and Gunnar Lund and J Kemper and Gerhard Adam and A Stork",
year = "2009",
language = "Deutsch",
volume = "181",
pages = "161--168",
journal = "ROFO-FORTSCHR RONTG",
issn = "1438-9029",
publisher = "Georg Thieme Verlag KG",
number = "2",

}

RIS

TY - JOUR

T1 - Assessment of left ventricular function parameters with a new three-dimensional shape model.

AU - Bansmann, P M

AU - Sénégas, J

AU - Müllerleile, Kai

AU - Lund, Gunnar

AU - Kemper, J

AU - Adam, Gerhard

AU - Stork, A

PY - 2009

Y1 - 2009

N2 - PURPOSE: To evaluate a 3D model of the left ventricle (LV) which allows calculation of LV function parameters on the basis of both short axis (SA) and long axis (LA) cine acquisitions. Comparison with the conventional Simpson's rule method in a volunteer and patient collective. MATERIALS AND METHODS: Cine imaging was performed with a prospectively triggered SSFP sequence: trueFISP: TR 3.6 msec, TE 1.8 msec, bFFE: TR 3.0 msec, TE 1.4 msec, flip angle 60 degrees , resolution 1.37 x 1.37 mm, slice thickness 8 mm, gap 2 mm in SA orientation from apex to basis and in radial LA orientation (spacing 15 degrees) in 11 volunteers and 27 patients with mitral valve insufficiency. Five different volume computations were compared: Simpson's rule based on all SA slices (M0), 3D shape model based on all SA slices (M1a), 3D shape model based on 3 SA slices (M1b), 3D shape model based on all SA and LA slices (M2a), and 3D shape model based on 3 SA slices and 1 LA slice (M2b). RESULTS: M 0 and M 1a give similar results (r: 0.99, b: 0.98). M 2a produces larger volumes than M 0 (b: 0.85) due to the inclusion of the LA contours. M 1b effectively reproduces the volumes computed with M 0 (r: 0.99, b: 1.02). M 2b effectively reproduces the volumes computed with M 2a (r: 0.99, b: 0.94). M 2b and M 0 give similar results in the patient collective (r: 0.99, b: 0.97). CONCLUSION: The proposed 3D shape model allows merging of information acquired in different orientations and thus the combination of SA and LA contours with better coverage of the left ventricle. It provides a suitable fit with a reduced number of segmented contours.

AB - PURPOSE: To evaluate a 3D model of the left ventricle (LV) which allows calculation of LV function parameters on the basis of both short axis (SA) and long axis (LA) cine acquisitions. Comparison with the conventional Simpson's rule method in a volunteer and patient collective. MATERIALS AND METHODS: Cine imaging was performed with a prospectively triggered SSFP sequence: trueFISP: TR 3.6 msec, TE 1.8 msec, bFFE: TR 3.0 msec, TE 1.4 msec, flip angle 60 degrees , resolution 1.37 x 1.37 mm, slice thickness 8 mm, gap 2 mm in SA orientation from apex to basis and in radial LA orientation (spacing 15 degrees) in 11 volunteers and 27 patients with mitral valve insufficiency. Five different volume computations were compared: Simpson's rule based on all SA slices (M0), 3D shape model based on all SA slices (M1a), 3D shape model based on 3 SA slices (M1b), 3D shape model based on all SA and LA slices (M2a), and 3D shape model based on 3 SA slices and 1 LA slice (M2b). RESULTS: M 0 and M 1a give similar results (r: 0.99, b: 0.98). M 2a produces larger volumes than M 0 (b: 0.85) due to the inclusion of the LA contours. M 1b effectively reproduces the volumes computed with M 0 (r: 0.99, b: 1.02). M 2b effectively reproduces the volumes computed with M 2a (r: 0.99, b: 0.94). M 2b and M 0 give similar results in the patient collective (r: 0.99, b: 0.97). CONCLUSION: The proposed 3D shape model allows merging of information acquired in different orientations and thus the combination of SA and LA contours with better coverage of the left ventricle. It provides a suitable fit with a reduced number of segmented contours.

M3 - SCORING: Zeitschriftenaufsatz

VL - 181

SP - 161

EP - 168

JO - ROFO-FORTSCHR RONTG

JF - ROFO-FORTSCHR RONTG

SN - 1438-9029

IS - 2

M1 - 2

ER -