Amount and spatial arrangement of muscle fibers in the human laryngeal Musculus ventricularis

Standard

Amount and spatial arrangement of muscle fibers in the human laryngeal Musculus ventricularis. / Gocht, Andreas; Lüers, Georg; Schumacher, Udo.

In: CLIN ANAT, Vol. 36, No. 8, 11.2023, p. 1138-1146.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{4ca906af35304f6791fa9951cf361d34,
title = "Amount and spatial arrangement of muscle fibers in the human laryngeal Musculus ventricularis",
abstract = "Textbooks and atlases of human macroscopic and microscopic anatomy of the larynx generally provide, if at all, only sparse information on the laryngeal Musculus ventricularis. However, several studies indicate that this muscle takes over the function of vestibular (ventricular) fold phonation after denervation of the Musculus vocalis. In the present study, 29 laryngeal specimens were coronally dissected at different levels, i.e. the anterior (L1), middle (L2), and posterior third of the vestibular fold (L3), and they underwent histological analysis. In all specimens the vestibular folds of both hemi-larynxes contained striated muscle bundles in variable amounts, representing a ventricularis muscle. These muscle bundles obviously originated from the lateral (external) and thyroepiglottic part of the thyroarytenoid muscle and the aryepiglottic part of the oblique arytenoid muscle, as has been described by other authors. The areas of vestibular folds and their amounts of ventricularis muscle bundles were measured using image analysis software (imageJ) by manual tracing. The mean area of the vestibular folds of both hemi-larynxes was 27.9 mm2 (SD [standard deviation] ± 9.17), and the area occupied by fibers of the ventricularis muscle was 1.5 mm2 (SD ± 1.78). Statistical analysis comparing the areas of both hemi-larynxes and levels resulted in no significant differences, except for the levels 2 and 3. In level 2, significantly more muscle fibers (2.0 mm2 ; SD ± 2.21) were detectable within the vestibular fold than in level 3 (0.9 mm2 ; SD ± 1.43). Level 1 also contained more muscle fibers (1.1 mm2 ; SD ± 1.06) than level 3, however, without significance. In conclusion, the laryngeal ventricularis muscle is present in the majority of reported cases. Since the muscle is of clinical relevance, it should be included in anatomical textbooks by default.",
author = "Andreas Gocht and Georg L{\"u}ers and Udo Schumacher",
note = "{\textcopyright} 2023 The Authors. Clinical Anatomy published by Wiley Periodicals LLC on behalf of American Association of Clinical Anatomists and British Association of Clinical Anatomists.",
year = "2023",
month = nov,
doi = "10.1002/ca.24050",
language = "English",
volume = "36",
pages = "1138--1146",
journal = "CLIN ANAT",
issn = "0897-3806",
publisher = "Wiley-Liss Inc.",
number = "8",

}

RIS

TY - JOUR

T1 - Amount and spatial arrangement of muscle fibers in the human laryngeal Musculus ventricularis

AU - Gocht, Andreas

AU - Lüers, Georg

AU - Schumacher, Udo

N1 - © 2023 The Authors. Clinical Anatomy published by Wiley Periodicals LLC on behalf of American Association of Clinical Anatomists and British Association of Clinical Anatomists.

PY - 2023/11

Y1 - 2023/11

N2 - Textbooks and atlases of human macroscopic and microscopic anatomy of the larynx generally provide, if at all, only sparse information on the laryngeal Musculus ventricularis. However, several studies indicate that this muscle takes over the function of vestibular (ventricular) fold phonation after denervation of the Musculus vocalis. In the present study, 29 laryngeal specimens were coronally dissected at different levels, i.e. the anterior (L1), middle (L2), and posterior third of the vestibular fold (L3), and they underwent histological analysis. In all specimens the vestibular folds of both hemi-larynxes contained striated muscle bundles in variable amounts, representing a ventricularis muscle. These muscle bundles obviously originated from the lateral (external) and thyroepiglottic part of the thyroarytenoid muscle and the aryepiglottic part of the oblique arytenoid muscle, as has been described by other authors. The areas of vestibular folds and their amounts of ventricularis muscle bundles were measured using image analysis software (imageJ) by manual tracing. The mean area of the vestibular folds of both hemi-larynxes was 27.9 mm2 (SD [standard deviation] ± 9.17), and the area occupied by fibers of the ventricularis muscle was 1.5 mm2 (SD ± 1.78). Statistical analysis comparing the areas of both hemi-larynxes and levels resulted in no significant differences, except for the levels 2 and 3. In level 2, significantly more muscle fibers (2.0 mm2 ; SD ± 2.21) were detectable within the vestibular fold than in level 3 (0.9 mm2 ; SD ± 1.43). Level 1 also contained more muscle fibers (1.1 mm2 ; SD ± 1.06) than level 3, however, without significance. In conclusion, the laryngeal ventricularis muscle is present in the majority of reported cases. Since the muscle is of clinical relevance, it should be included in anatomical textbooks by default.

AB - Textbooks and atlases of human macroscopic and microscopic anatomy of the larynx generally provide, if at all, only sparse information on the laryngeal Musculus ventricularis. However, several studies indicate that this muscle takes over the function of vestibular (ventricular) fold phonation after denervation of the Musculus vocalis. In the present study, 29 laryngeal specimens were coronally dissected at different levels, i.e. the anterior (L1), middle (L2), and posterior third of the vestibular fold (L3), and they underwent histological analysis. In all specimens the vestibular folds of both hemi-larynxes contained striated muscle bundles in variable amounts, representing a ventricularis muscle. These muscle bundles obviously originated from the lateral (external) and thyroepiglottic part of the thyroarytenoid muscle and the aryepiglottic part of the oblique arytenoid muscle, as has been described by other authors. The areas of vestibular folds and their amounts of ventricularis muscle bundles were measured using image analysis software (imageJ) by manual tracing. The mean area of the vestibular folds of both hemi-larynxes was 27.9 mm2 (SD [standard deviation] ± 9.17), and the area occupied by fibers of the ventricularis muscle was 1.5 mm2 (SD ± 1.78). Statistical analysis comparing the areas of both hemi-larynxes and levels resulted in no significant differences, except for the levels 2 and 3. In level 2, significantly more muscle fibers (2.0 mm2 ; SD ± 2.21) were detectable within the vestibular fold than in level 3 (0.9 mm2 ; SD ± 1.43). Level 1 also contained more muscle fibers (1.1 mm2 ; SD ± 1.06) than level 3, however, without significance. In conclusion, the laryngeal ventricularis muscle is present in the majority of reported cases. Since the muscle is of clinical relevance, it should be included in anatomical textbooks by default.

U2 - 10.1002/ca.24050

DO - 10.1002/ca.24050

M3 - SCORING: Journal article

C2 - 37092576

VL - 36

SP - 1138

EP - 1146

JO - CLIN ANAT

JF - CLIN ANAT

SN - 0897-3806

IS - 8

ER -