Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.

Standard

Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. / Chen, Jian; Wu, Junfang; Apostolova, Ivalya; Skup, Malgorzata; Irintchev, Andrey; Kügler, Sebastian; Schachner, Melitta.

In: BRAIN, Vol. 130, No. 4, 4, 2007, p. 954-969.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{76204ea2e9dc4cb4a77677dd9ea3ab9a,
title = "Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.",
abstract = "Paucity of permissive molecules and abundance of inhibitory molecules in the injured spinal cord of adult mammals prevent axons from successful regeneration and, thus, contribute to the failure of functional recovery. Using an adeno-associated viral (AAV) vector, we expressed the regeneration-promoting cell adhesion molecule L1 in both neurons and glia in the lesioned spinal cord of adult mice. Exogenous L1, detectable already 1 week after thoracic spinal cord compression and immediate vector injection, was expressed at high levels up to 5 weeks, the longest time-period studied. Dissemination of L1-transduced cells throughout the spinal cord was wide, spanning over more than 10 mm rostral and 10 mm caudal to the lesion scar. L1 was not detectable in the fibronectin-positive lesion core. L1 overexpression led to improved stepping abilities and muscle coordination during ground locomotion over a 5-week observation period. Superior functional improvement was associated with enhanced reinnervation of the lumbar spinal cord by 5-HT axons. Corticospinal tract axons did not regrow beyond the lesion scar but extended distally into closer proximity to the injury site in AAV-L1-treated compared with control mice. The expression of the neurite outgrowth-inhibitory chondroitin sulphate proteoglycan NG2 was decreased in AAV-L1-treated spinal cords, along with reduction of the reactive astroglial marker GFAP. In vitro experiments confirmed that L1 inhibits astrocyte proliferation, migration, process extension and GFAP expression. Analyses of intracellular signalling indicated that exogenous L1 activates diverse cascades in neurons and glia. Thus, AAV-mediated L1 overexpression appears to be a potent means to favourably modify the local environment in the injured spinal cord and promote regeneration. Our study demonstrates a clinically feasible approach of promising potential.",
author = "Jian Chen and Junfang Wu and Ivalya Apostolova and Malgorzata Skup and Andrey Irintchev and Sebastian K{\"u}gler and Melitta Schachner",
year = "2007",
language = "Deutsch",
volume = "130",
pages = "954--969",
journal = "BRAIN",
issn = "0006-8950",
publisher = "Oxford University Press",
number = "4",

}

RIS

TY - JOUR

T1 - Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.

AU - Chen, Jian

AU - Wu, Junfang

AU - Apostolova, Ivalya

AU - Skup, Malgorzata

AU - Irintchev, Andrey

AU - Kügler, Sebastian

AU - Schachner, Melitta

PY - 2007

Y1 - 2007

N2 - Paucity of permissive molecules and abundance of inhibitory molecules in the injured spinal cord of adult mammals prevent axons from successful regeneration and, thus, contribute to the failure of functional recovery. Using an adeno-associated viral (AAV) vector, we expressed the regeneration-promoting cell adhesion molecule L1 in both neurons and glia in the lesioned spinal cord of adult mice. Exogenous L1, detectable already 1 week after thoracic spinal cord compression and immediate vector injection, was expressed at high levels up to 5 weeks, the longest time-period studied. Dissemination of L1-transduced cells throughout the spinal cord was wide, spanning over more than 10 mm rostral and 10 mm caudal to the lesion scar. L1 was not detectable in the fibronectin-positive lesion core. L1 overexpression led to improved stepping abilities and muscle coordination during ground locomotion over a 5-week observation period. Superior functional improvement was associated with enhanced reinnervation of the lumbar spinal cord by 5-HT axons. Corticospinal tract axons did not regrow beyond the lesion scar but extended distally into closer proximity to the injury site in AAV-L1-treated compared with control mice. The expression of the neurite outgrowth-inhibitory chondroitin sulphate proteoglycan NG2 was decreased in AAV-L1-treated spinal cords, along with reduction of the reactive astroglial marker GFAP. In vitro experiments confirmed that L1 inhibits astrocyte proliferation, migration, process extension and GFAP expression. Analyses of intracellular signalling indicated that exogenous L1 activates diverse cascades in neurons and glia. Thus, AAV-mediated L1 overexpression appears to be a potent means to favourably modify the local environment in the injured spinal cord and promote regeneration. Our study demonstrates a clinically feasible approach of promising potential.

AB - Paucity of permissive molecules and abundance of inhibitory molecules in the injured spinal cord of adult mammals prevent axons from successful regeneration and, thus, contribute to the failure of functional recovery. Using an adeno-associated viral (AAV) vector, we expressed the regeneration-promoting cell adhesion molecule L1 in both neurons and glia in the lesioned spinal cord of adult mice. Exogenous L1, detectable already 1 week after thoracic spinal cord compression and immediate vector injection, was expressed at high levels up to 5 weeks, the longest time-period studied. Dissemination of L1-transduced cells throughout the spinal cord was wide, spanning over more than 10 mm rostral and 10 mm caudal to the lesion scar. L1 was not detectable in the fibronectin-positive lesion core. L1 overexpression led to improved stepping abilities and muscle coordination during ground locomotion over a 5-week observation period. Superior functional improvement was associated with enhanced reinnervation of the lumbar spinal cord by 5-HT axons. Corticospinal tract axons did not regrow beyond the lesion scar but extended distally into closer proximity to the injury site in AAV-L1-treated compared with control mice. The expression of the neurite outgrowth-inhibitory chondroitin sulphate proteoglycan NG2 was decreased in AAV-L1-treated spinal cords, along with reduction of the reactive astroglial marker GFAP. In vitro experiments confirmed that L1 inhibits astrocyte proliferation, migration, process extension and GFAP expression. Analyses of intracellular signalling indicated that exogenous L1 activates diverse cascades in neurons and glia. Thus, AAV-mediated L1 overexpression appears to be a potent means to favourably modify the local environment in the injured spinal cord and promote regeneration. Our study demonstrates a clinically feasible approach of promising potential.

M3 - SCORING: Zeitschriftenaufsatz

VL - 130

SP - 954

EP - 969

JO - BRAIN

JF - BRAIN

SN - 0006-8950

IS - 4

M1 - 4

ER -