Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac.

Standard

Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac. / Hinz, Burkhard; Rau, Thomas; Auge, Daniel; Werner, Ulrike; Ramer, Robert; Rietbrock, Stephan; Brune, Kay.

In: CLIN PHARMACOL THER, Vol. 74, No. 3, 3, 2003, p. 222-235.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Hinz B, Rau T, Auge D, Werner U, Ramer R, Rietbrock S et al. Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac. CLIN PHARMACOL THER. 2003;74(3):222-235. 3.

Bibtex

@article{07c7e09a708949f39b929c5bf5731f8c,
title = "Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac.",
abstract = "OBJECTIVE: The mechanism of action of aceclofenac is currently unclear. This study investigated whether biotransformation to metabolites (4'-hydroxy-aceclofenac, diclofenac, 4'-hydroxy-diclofenac) contributes to inhibitory effects on the cyclooxygenase (COX) isozymes in vitro and ex vivo. METHODS: In vitro investigations were performed with human whole blood and human blood monocytes. A randomized crossover study was performed in volunteers receiving 100 mg aceclofenac or a sustained-release resinate formulation of 75 mg diclofenac to assess the pharmacokinetics and the ex vivo inhibition of COX-1. RESULTS: In short-term in vitro assays, neither aceclofenac nor 4'-hydroxy-aceclofenac affected COX-1 or COX-2, whereas diclofenac and 4'-hydroxy-diclofenac inhibited both isoforms. In long-term in vitro assays, aceclofenac and 4'-hydroxy-aceclofenac suppressed both COX isoforms. However, this inhibition was paralleled by a conversion to diclofenac and 4'-hydroxy-diclofenac, respectively. Maximal plasma concentrations of diclofenac after oral administration of aceclofenac (0.39 micromol/L) or diclofenac (1.28 micromol/L) were sufficient for a greater than 97% inhibition of COX-2 (50% inhibitory concentration, 0.024 micromol/L) and a 46% (aceclofenac treatment) or 82% inhibition (diclofenac treatment) of COX-1 (50% inhibitory concentration, 0.43 micromol/L). Moreover, ex vivo COX-1-dependent thromboxane B(2) synthesis was inhibited significantly less by aceclofenac than by diclofenac. CONCLUSIONS: Inhibition of COX isozymes by aceclofenac requires conversion into diclofenac. Although 100 mg aceclofenac yielded diclofenac concentrations substantially lower than 75 mg diclofenac, these were sufficient for a sustained block of COX-2 but caused a minor and shorter inhibition of COX-1 than 75 mg diclofenac. In conclusion, both COX-1-sparing and COX-2-inhibitory actions of aceclofenac may rest in its limited but sustained biotransformation to diclofenac.",
author = "Burkhard Hinz and Thomas Rau and Daniel Auge and Ulrike Werner and Robert Ramer and Stephan Rietbrock and Kay Brune",
year = "2003",
language = "Deutsch",
volume = "74",
pages = "222--235",
journal = "CLIN PHARMACOL THER",
issn = "0009-9236",
publisher = "NATURE PUBLISHING GROUP",
number = "3",

}

RIS

TY - JOUR

T1 - Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac.

AU - Hinz, Burkhard

AU - Rau, Thomas

AU - Auge, Daniel

AU - Werner, Ulrike

AU - Ramer, Robert

AU - Rietbrock, Stephan

AU - Brune, Kay

PY - 2003

Y1 - 2003

N2 - OBJECTIVE: The mechanism of action of aceclofenac is currently unclear. This study investigated whether biotransformation to metabolites (4'-hydroxy-aceclofenac, diclofenac, 4'-hydroxy-diclofenac) contributes to inhibitory effects on the cyclooxygenase (COX) isozymes in vitro and ex vivo. METHODS: In vitro investigations were performed with human whole blood and human blood monocytes. A randomized crossover study was performed in volunteers receiving 100 mg aceclofenac or a sustained-release resinate formulation of 75 mg diclofenac to assess the pharmacokinetics and the ex vivo inhibition of COX-1. RESULTS: In short-term in vitro assays, neither aceclofenac nor 4'-hydroxy-aceclofenac affected COX-1 or COX-2, whereas diclofenac and 4'-hydroxy-diclofenac inhibited both isoforms. In long-term in vitro assays, aceclofenac and 4'-hydroxy-aceclofenac suppressed both COX isoforms. However, this inhibition was paralleled by a conversion to diclofenac and 4'-hydroxy-diclofenac, respectively. Maximal plasma concentrations of diclofenac after oral administration of aceclofenac (0.39 micromol/L) or diclofenac (1.28 micromol/L) were sufficient for a greater than 97% inhibition of COX-2 (50% inhibitory concentration, 0.024 micromol/L) and a 46% (aceclofenac treatment) or 82% inhibition (diclofenac treatment) of COX-1 (50% inhibitory concentration, 0.43 micromol/L). Moreover, ex vivo COX-1-dependent thromboxane B(2) synthesis was inhibited significantly less by aceclofenac than by diclofenac. CONCLUSIONS: Inhibition of COX isozymes by aceclofenac requires conversion into diclofenac. Although 100 mg aceclofenac yielded diclofenac concentrations substantially lower than 75 mg diclofenac, these were sufficient for a sustained block of COX-2 but caused a minor and shorter inhibition of COX-1 than 75 mg diclofenac. In conclusion, both COX-1-sparing and COX-2-inhibitory actions of aceclofenac may rest in its limited but sustained biotransformation to diclofenac.

AB - OBJECTIVE: The mechanism of action of aceclofenac is currently unclear. This study investigated whether biotransformation to metabolites (4'-hydroxy-aceclofenac, diclofenac, 4'-hydroxy-diclofenac) contributes to inhibitory effects on the cyclooxygenase (COX) isozymes in vitro and ex vivo. METHODS: In vitro investigations were performed with human whole blood and human blood monocytes. A randomized crossover study was performed in volunteers receiving 100 mg aceclofenac or a sustained-release resinate formulation of 75 mg diclofenac to assess the pharmacokinetics and the ex vivo inhibition of COX-1. RESULTS: In short-term in vitro assays, neither aceclofenac nor 4'-hydroxy-aceclofenac affected COX-1 or COX-2, whereas diclofenac and 4'-hydroxy-diclofenac inhibited both isoforms. In long-term in vitro assays, aceclofenac and 4'-hydroxy-aceclofenac suppressed both COX isoforms. However, this inhibition was paralleled by a conversion to diclofenac and 4'-hydroxy-diclofenac, respectively. Maximal plasma concentrations of diclofenac after oral administration of aceclofenac (0.39 micromol/L) or diclofenac (1.28 micromol/L) were sufficient for a greater than 97% inhibition of COX-2 (50% inhibitory concentration, 0.024 micromol/L) and a 46% (aceclofenac treatment) or 82% inhibition (diclofenac treatment) of COX-1 (50% inhibitory concentration, 0.43 micromol/L). Moreover, ex vivo COX-1-dependent thromboxane B(2) synthesis was inhibited significantly less by aceclofenac than by diclofenac. CONCLUSIONS: Inhibition of COX isozymes by aceclofenac requires conversion into diclofenac. Although 100 mg aceclofenac yielded diclofenac concentrations substantially lower than 75 mg diclofenac, these were sufficient for a sustained block of COX-2 but caused a minor and shorter inhibition of COX-1 than 75 mg diclofenac. In conclusion, both COX-1-sparing and COX-2-inhibitory actions of aceclofenac may rest in its limited but sustained biotransformation to diclofenac.

M3 - SCORING: Zeitschriftenaufsatz

VL - 74

SP - 222

EP - 235

JO - CLIN PHARMACOL THER

JF - CLIN PHARMACOL THER

SN - 0009-9236

IS - 3

M1 - 3

ER -