A statistical inference approach to reconstruct intercellular interactions in cell migration experiments

  • Elena Agliari
  • Pablo J Sáez
  • Adriano Barra
  • Matthieu Piel
  • Pablo Vargas
  • Michele Castellana

Abstract

Migration of cells can be characterized by two prototypical types of motion: individual and collective migration. We propose a statistical inference approach designed to detect the presence of cell-cell interactions that give rise to collective behaviors in cell motility experiments. This inference method has been first successfully tested on synthetic motional data and then applied to two experiments. In the first experiment, cells migrate in a wound-healing model: When applied to this experiment, the inference method predicts the existence of cell-cell interactions, correctly mirroring the strong intercellular contacts that are present in the experiment. In the second experiment, dendritic cells migrate in a chemokine gradient. Our inference analysis does not provide evidence for interactions, indicating that cells migrate by sensing independently the chemokine source. According to this prediction, we speculate that mature dendritic cells disregard intercellular signals that could otherwise delay their arrival to lymph vessels.

Bibliographical data

Original languageEnglish
Article numbereaay2103
ISSN2375-2548
DOIs
Publication statusPublished - 03.2020
Externally publishedYes

Comment Deanary

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

PubMed 32195344