A new algorithm for concealed accessory pathway localization using T-wave-subtracted retrograde P-wave polarity during orthodromic atrioventricular reentrant tachycardia

Standard

A new algorithm for concealed accessory pathway localization using T-wave-subtracted retrograde P-wave polarity during orthodromic atrioventricular reentrant tachycardia. / Rostock, Thomas; Sydow, Karsten; Steven, Daniel; Lutomsky, Boris; Servatius, Helge; Drewitz, Imke; Falke, Viktoria; Müllerleile, Kai; Ventura, Rodolfo; Meinertz, Thomas; Willems, Stephan.

In: J INTERV CARD ELECTR, Vol. 22, No. 1, 06.2008, p. 55-63.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{1db9e4514c294bc5b3c676431589c2ac,
title = "A new algorithm for concealed accessory pathway localization using T-wave-subtracted retrograde P-wave polarity during orthodromic atrioventricular reentrant tachycardia",
abstract = "INTRODUCTION: AP localization can be predicted by analyzing the polarity of the delta wave, QRS polarity, and R/S ratio in patients with Wolff-Parkinson-White syndrome. However, the estimation of AP location is limited in patients with concealed pathways during atrioventricular reentrant tachycardias (AVRT). Thus, we analyzed retrograde P-wave polarity during orthodromic AVRT and developed an algorithm to predict the localization of concealed accessory pathways (AP).METHODS AND RESULTS: A total number of 131 patients with a single AP and inducible orthodromic AVRT were included. The initial 61 patients were analyzed retrospectively for algorithm development, whereas 70 patients were evaluated prospectively. The retrograde P-wave polarity was analyzed by subtracting the superimposing T-wave during orthodromic AVRT using custom-designed software. Four leads of the surface electrocardiogram (ECG) were identified to accurately distinguish AP locations assigned to four different regions around each AV annulus: I, aVR, aVL, and V(1). Lead V(1) was used to differentiate right (negative or isoelectric) from left (solely positive) APs. Retrograde P-wave in lead I was negative in left posterior APs exclusively and became more positive with an AP location shifting towards right anterior. P-wave polarity in lead aVR demonstrated a shift from a positive polarity from left APs to isoelectric in right APs. The opposite direction (shift from positive to isoelectric) was observed for lead aVL. The subsequently developed algorithm for concealed AP localization using these surface ECG leads demonstrated a high sensitivity, specificity, and positive predictive value particularly for common AP localizations (left posterior and inferior, and right septal) when applied in a prospective fashion.CONCLUSION: Concealed AP localization can be accurately predicted by the analysis of retrograde P-wave polarity during orthodromic AVRT using the algorithm derived from the presented study.",
keywords = "Algorithms, Electrocardiography, Electrophysiologic Techniques, Cardiac, Female, Heart Conduction System/physiopathology, Humans, Male, Models, Cardiovascular, Predictive Value of Tests, Sensitivity and Specificity, Tachycardia, Atrioventricular Nodal Reentry/physiopathology",
author = "Thomas Rostock and Karsten Sydow and Daniel Steven and Boris Lutomsky and Helge Servatius and Imke Drewitz and Viktoria Falke and Kai M{\"u}llerleile and Rodolfo Ventura and Thomas Meinertz and Stephan Willems",
year = "2008",
month = jun,
doi = "10.1007/s10840-008-9253-y",
language = "English",
volume = "22",
pages = "55--63",
journal = "J INTERV CARD ELECTR",
issn = "1383-875X",
publisher = "Springer Netherlands",
number = "1",

}

RIS

TY - JOUR

T1 - A new algorithm for concealed accessory pathway localization using T-wave-subtracted retrograde P-wave polarity during orthodromic atrioventricular reentrant tachycardia

AU - Rostock, Thomas

AU - Sydow, Karsten

AU - Steven, Daniel

AU - Lutomsky, Boris

AU - Servatius, Helge

AU - Drewitz, Imke

AU - Falke, Viktoria

AU - Müllerleile, Kai

AU - Ventura, Rodolfo

AU - Meinertz, Thomas

AU - Willems, Stephan

PY - 2008/6

Y1 - 2008/6

N2 - INTRODUCTION: AP localization can be predicted by analyzing the polarity of the delta wave, QRS polarity, and R/S ratio in patients with Wolff-Parkinson-White syndrome. However, the estimation of AP location is limited in patients with concealed pathways during atrioventricular reentrant tachycardias (AVRT). Thus, we analyzed retrograde P-wave polarity during orthodromic AVRT and developed an algorithm to predict the localization of concealed accessory pathways (AP).METHODS AND RESULTS: A total number of 131 patients with a single AP and inducible orthodromic AVRT were included. The initial 61 patients were analyzed retrospectively for algorithm development, whereas 70 patients were evaluated prospectively. The retrograde P-wave polarity was analyzed by subtracting the superimposing T-wave during orthodromic AVRT using custom-designed software. Four leads of the surface electrocardiogram (ECG) were identified to accurately distinguish AP locations assigned to four different regions around each AV annulus: I, aVR, aVL, and V(1). Lead V(1) was used to differentiate right (negative or isoelectric) from left (solely positive) APs. Retrograde P-wave in lead I was negative in left posterior APs exclusively and became more positive with an AP location shifting towards right anterior. P-wave polarity in lead aVR demonstrated a shift from a positive polarity from left APs to isoelectric in right APs. The opposite direction (shift from positive to isoelectric) was observed for lead aVL. The subsequently developed algorithm for concealed AP localization using these surface ECG leads demonstrated a high sensitivity, specificity, and positive predictive value particularly for common AP localizations (left posterior and inferior, and right septal) when applied in a prospective fashion.CONCLUSION: Concealed AP localization can be accurately predicted by the analysis of retrograde P-wave polarity during orthodromic AVRT using the algorithm derived from the presented study.

AB - INTRODUCTION: AP localization can be predicted by analyzing the polarity of the delta wave, QRS polarity, and R/S ratio in patients with Wolff-Parkinson-White syndrome. However, the estimation of AP location is limited in patients with concealed pathways during atrioventricular reentrant tachycardias (AVRT). Thus, we analyzed retrograde P-wave polarity during orthodromic AVRT and developed an algorithm to predict the localization of concealed accessory pathways (AP).METHODS AND RESULTS: A total number of 131 patients with a single AP and inducible orthodromic AVRT were included. The initial 61 patients were analyzed retrospectively for algorithm development, whereas 70 patients were evaluated prospectively. The retrograde P-wave polarity was analyzed by subtracting the superimposing T-wave during orthodromic AVRT using custom-designed software. Four leads of the surface electrocardiogram (ECG) were identified to accurately distinguish AP locations assigned to four different regions around each AV annulus: I, aVR, aVL, and V(1). Lead V(1) was used to differentiate right (negative or isoelectric) from left (solely positive) APs. Retrograde P-wave in lead I was negative in left posterior APs exclusively and became more positive with an AP location shifting towards right anterior. P-wave polarity in lead aVR demonstrated a shift from a positive polarity from left APs to isoelectric in right APs. The opposite direction (shift from positive to isoelectric) was observed for lead aVL. The subsequently developed algorithm for concealed AP localization using these surface ECG leads demonstrated a high sensitivity, specificity, and positive predictive value particularly for common AP localizations (left posterior and inferior, and right septal) when applied in a prospective fashion.CONCLUSION: Concealed AP localization can be accurately predicted by the analysis of retrograde P-wave polarity during orthodromic AVRT using the algorithm derived from the presented study.

KW - Algorithms

KW - Electrocardiography

KW - Electrophysiologic Techniques, Cardiac

KW - Female

KW - Heart Conduction System/physiopathology

KW - Humans

KW - Male

KW - Models, Cardiovascular

KW - Predictive Value of Tests

KW - Sensitivity and Specificity

KW - Tachycardia, Atrioventricular Nodal Reentry/physiopathology

U2 - 10.1007/s10840-008-9253-y

DO - 10.1007/s10840-008-9253-y

M3 - SCORING: Journal article

C2 - 18415672

VL - 22

SP - 55

EP - 63

JO - J INTERV CARD ELECTR

JF - J INTERV CARD ELECTR

SN - 1383-875X

IS - 1

ER -