Transcriptional ERRgamma2-mediated activation is regulated by sentrin-specific proteases.

Standard

Transcriptional ERRgamma2-mediated activation is regulated by sentrin-specific proteases. / Hentschke, Moritz; Süsens, Ute; Borgmeyer, Uwe.

in: BIOCHEM J, Jahrgang 419, Nr. 1, 1, 2009, S. 167-176.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{a3d32a1b2e2a4432b46e4fb385858a2c,
title = "Transcriptional ERRgamma2-mediated activation is regulated by sentrin-specific proteases.",
abstract = "Modification with SUMOs (small ubiquitin-related modifiers) has emerged as an important means of regulating the activity of transcription factors, often by repressing their activity. The ERRgamma [oestrogen receptor-related receptor gamma; ERR3 or NR3B3 (nuclear receptor subfamily 3, group B, gene3)] is a constitutively active orphan nuclear receptor. A PDSM, (phosphorylation-dependent sumoylation motif) is located in the close vicinity of the N-terminally located ERRgamma2-specific AF-1 (activation function-1). Its function can be replaced by an NDSM (negatively charged amino acid-dependent sumoylation motif). A mutational analysis reveals that ERRgamma2 activity is modulated through sumoylation of a lysine residue at position 40, which in turn is regulated by phosphorylation. Phosphorylation at the +5 position relative to the sumoylation target is directly visualized by a high-resolution EMSA (electrophoretic mobility-shift assay). Sumoylation represses the activity of ERRgamma both with and without forced expression of the PGC-1beta (peroxisome-proliferator-activated receptor gamma co-activator-1beta). Fusion proteins of a heterologous DNA-binding domain with the ERRgamma2 N-terminus demonstrate the function of the PDSM as the RF-1 (repression function-1) for the neighbouring AF-1. De-repression is achieved by co-expression of sentrin/SENP (sentrin-specific protease) family members. Together, our results demonstrate reversible phosphorylation-dependent sumoylation as a means to regulate the activity of an orphan nuclear receptor.",
author = "Moritz Hentschke and Ute S{\"u}sens and Uwe Borgmeyer",
year = "2009",
language = "Deutsch",
volume = "419",
pages = "167--176",
journal = "BIOCHEM J",
issn = "0264-6021",
publisher = "PORTLAND PRESS LTD",
number = "1",

}

RIS

TY - JOUR

T1 - Transcriptional ERRgamma2-mediated activation is regulated by sentrin-specific proteases.

AU - Hentschke, Moritz

AU - Süsens, Ute

AU - Borgmeyer, Uwe

PY - 2009

Y1 - 2009

N2 - Modification with SUMOs (small ubiquitin-related modifiers) has emerged as an important means of regulating the activity of transcription factors, often by repressing their activity. The ERRgamma [oestrogen receptor-related receptor gamma; ERR3 or NR3B3 (nuclear receptor subfamily 3, group B, gene3)] is a constitutively active orphan nuclear receptor. A PDSM, (phosphorylation-dependent sumoylation motif) is located in the close vicinity of the N-terminally located ERRgamma2-specific AF-1 (activation function-1). Its function can be replaced by an NDSM (negatively charged amino acid-dependent sumoylation motif). A mutational analysis reveals that ERRgamma2 activity is modulated through sumoylation of a lysine residue at position 40, which in turn is regulated by phosphorylation. Phosphorylation at the +5 position relative to the sumoylation target is directly visualized by a high-resolution EMSA (electrophoretic mobility-shift assay). Sumoylation represses the activity of ERRgamma both with and without forced expression of the PGC-1beta (peroxisome-proliferator-activated receptor gamma co-activator-1beta). Fusion proteins of a heterologous DNA-binding domain with the ERRgamma2 N-terminus demonstrate the function of the PDSM as the RF-1 (repression function-1) for the neighbouring AF-1. De-repression is achieved by co-expression of sentrin/SENP (sentrin-specific protease) family members. Together, our results demonstrate reversible phosphorylation-dependent sumoylation as a means to regulate the activity of an orphan nuclear receptor.

AB - Modification with SUMOs (small ubiquitin-related modifiers) has emerged as an important means of regulating the activity of transcription factors, often by repressing their activity. The ERRgamma [oestrogen receptor-related receptor gamma; ERR3 or NR3B3 (nuclear receptor subfamily 3, group B, gene3)] is a constitutively active orphan nuclear receptor. A PDSM, (phosphorylation-dependent sumoylation motif) is located in the close vicinity of the N-terminally located ERRgamma2-specific AF-1 (activation function-1). Its function can be replaced by an NDSM (negatively charged amino acid-dependent sumoylation motif). A mutational analysis reveals that ERRgamma2 activity is modulated through sumoylation of a lysine residue at position 40, which in turn is regulated by phosphorylation. Phosphorylation at the +5 position relative to the sumoylation target is directly visualized by a high-resolution EMSA (electrophoretic mobility-shift assay). Sumoylation represses the activity of ERRgamma both with and without forced expression of the PGC-1beta (peroxisome-proliferator-activated receptor gamma co-activator-1beta). Fusion proteins of a heterologous DNA-binding domain with the ERRgamma2 N-terminus demonstrate the function of the PDSM as the RF-1 (repression function-1) for the neighbouring AF-1. De-repression is achieved by co-expression of sentrin/SENP (sentrin-specific protease) family members. Together, our results demonstrate reversible phosphorylation-dependent sumoylation as a means to regulate the activity of an orphan nuclear receptor.

M3 - SCORING: Zeitschriftenaufsatz

VL - 419

SP - 167

EP - 176

JO - BIOCHEM J

JF - BIOCHEM J

SN - 0264-6021

IS - 1

M1 - 1

ER -