Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish.

Standard

Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. / Guo, Y; Ma, L; Cristofanilli, M; Hart, R P; Hao, A; Schachner, Melitta.

in: NEUROSCIENCE, Jahrgang 172, 2011, S. 329-341.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M. Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. NEUROSCIENCE. 2011;172:329-341.

Bibtex

@article{1b0130c473a344c89a1f63cd6b6269ae,
title = "Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish.",
abstract = "Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, and found that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis following spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals.",
author = "Y Guo and L Ma and M Cristofanilli and Hart, {R P} and A Hao and Melitta Schachner",
year = "2011",
language = "English",
volume = "172",
pages = "329--341",
journal = "NEUROSCIENCE",
issn = "0306-4522",
publisher = "Elsevier Limited",

}

RIS

TY - JOUR

T1 - Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish.

AU - Guo, Y

AU - Ma, L

AU - Cristofanilli, M

AU - Hart, R P

AU - Hao, A

AU - Schachner, Melitta

PY - 2011

Y1 - 2011

N2 - Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, and found that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis following spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals.

AB - Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, and found that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis following spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals.

M3 - SCORING: Journal article

VL - 172

SP - 329

EP - 341

JO - NEUROSCIENCE

JF - NEUROSCIENCE

SN - 0306-4522

ER -