The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization.

Standard

The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization. / Nalaskowski, Marcus; Deschermeier, Christina; Fanick, Werner; Mayr, Georg W.

in: BIOCHEM J, Jahrgang 366, Nr. 2, 2, 2002, S. 549-556.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{92b13f8ddcef4b969f74ee14510524a9,
title = "The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization.",
abstract = "The function of the transcription regulator ArgRIII in the expression of several genes involved in the metabolism of arginine in yeast has been well studied. It was previously reported that it is also an inositol phosphate multikinase and an important factor of the mRNA export pathway [reviewed by Shears (2000) Bioessays 22, 786-789]. In the present study we report the cloning of a full-length 1248-bp cDNA encoding a human inositol phosphate multikinase (IPMK). This protein has a calculated molecular mass of 47.219 kDa. Functionally important motifs [inositol phosphate-binding site, ATP-binding site, catalytically important SSLL (Ser-Ser-Leu-Leu) domain] are conserved between the human IPMK and yeast ArgRIII. Bacterially expressed protein demonstrated an inositol phosphate multikinase activity similar to that of yeast ArgRIII. Ins(1,4,5)P3 is phosphorylated at positions 3 and 6 up to Ins(1,3,4,5,6)P5. The human IPMK fused with a fluorescent protein tag is localized predominantly in the nucleus when transiently expressed in mammalian cells. A basic cluster in the protein's C-terminus is positively involved in nuclear targeting. These findings are consistent with the concept of a nuclear inositol phosphate signalling and phosphorylation pathway in mammalian cells.",
author = "Marcus Nalaskowski and Christina Deschermeier and Werner Fanick and Mayr, {Georg W.}",
year = "2002",
language = "Deutsch",
volume = "366",
pages = "549--556",
journal = "BIOCHEM J",
issn = "0264-6021",
publisher = "PORTLAND PRESS LTD",
number = "2",

}

RIS

TY - JOUR

T1 - The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization.

AU - Nalaskowski, Marcus

AU - Deschermeier, Christina

AU - Fanick, Werner

AU - Mayr, Georg W.

PY - 2002

Y1 - 2002

N2 - The function of the transcription regulator ArgRIII in the expression of several genes involved in the metabolism of arginine in yeast has been well studied. It was previously reported that it is also an inositol phosphate multikinase and an important factor of the mRNA export pathway [reviewed by Shears (2000) Bioessays 22, 786-789]. In the present study we report the cloning of a full-length 1248-bp cDNA encoding a human inositol phosphate multikinase (IPMK). This protein has a calculated molecular mass of 47.219 kDa. Functionally important motifs [inositol phosphate-binding site, ATP-binding site, catalytically important SSLL (Ser-Ser-Leu-Leu) domain] are conserved between the human IPMK and yeast ArgRIII. Bacterially expressed protein demonstrated an inositol phosphate multikinase activity similar to that of yeast ArgRIII. Ins(1,4,5)P3 is phosphorylated at positions 3 and 6 up to Ins(1,3,4,5,6)P5. The human IPMK fused with a fluorescent protein tag is localized predominantly in the nucleus when transiently expressed in mammalian cells. A basic cluster in the protein's C-terminus is positively involved in nuclear targeting. These findings are consistent with the concept of a nuclear inositol phosphate signalling and phosphorylation pathway in mammalian cells.

AB - The function of the transcription regulator ArgRIII in the expression of several genes involved in the metabolism of arginine in yeast has been well studied. It was previously reported that it is also an inositol phosphate multikinase and an important factor of the mRNA export pathway [reviewed by Shears (2000) Bioessays 22, 786-789]. In the present study we report the cloning of a full-length 1248-bp cDNA encoding a human inositol phosphate multikinase (IPMK). This protein has a calculated molecular mass of 47.219 kDa. Functionally important motifs [inositol phosphate-binding site, ATP-binding site, catalytically important SSLL (Ser-Ser-Leu-Leu) domain] are conserved between the human IPMK and yeast ArgRIII. Bacterially expressed protein demonstrated an inositol phosphate multikinase activity similar to that of yeast ArgRIII. Ins(1,4,5)P3 is phosphorylated at positions 3 and 6 up to Ins(1,3,4,5,6)P5. The human IPMK fused with a fluorescent protein tag is localized predominantly in the nucleus when transiently expressed in mammalian cells. A basic cluster in the protein's C-terminus is positively involved in nuclear targeting. These findings are consistent with the concept of a nuclear inositol phosphate signalling and phosphorylation pathway in mammalian cells.

M3 - SCORING: Zeitschriftenaufsatz

VL - 366

SP - 549

EP - 556

JO - BIOCHEM J

JF - BIOCHEM J

SN - 0264-6021

IS - 2

M1 - 2

ER -