The Challenge of Post-Mortem GHB Analysis: Storage Conditions and Specimen Types Are Both Important

Standard

The Challenge of Post-Mortem GHB Analysis: Storage Conditions and Specimen Types Are Both Important. / Kietzerow, Jana ; Otto, Benjamin; Wilke, N; Rohde, H; Iwersen-Bergmann, Stefanie; Andresen-Streichert, Hilke.

in: INT J LEGAL MED, Jahrgang 2019, 10.2019, S. 205-215.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{060bde0c01cd49d29e144b8244bc9d97,
title = "The Challenge of Post-Mortem GHB Analysis: Storage Conditions and Specimen Types Are Both Important",
abstract = "BACKGROUND: For the interpretation of concentrations of gamma-hydroxybutyrate (GHB) in post-mortem specimens, a possible increase due to post-mortem generation in the body and in vitro has to be considered. The influence of different storage conditions and the specimen type was investigated.METHOD AND MATERIAL: Post-mortem GHB concentrations in femoral venous blood (VB), heart blood (HB), serum (S) from VB, urine (U), cerebrospinal fluid (CSF) and vitreous humour (VH) were determined by gas chromatography-mass spectrometry after derivatisation. Various storage conditions, that is 4 °C or room temperature (RT) and the addition of sodium fluoride (NaF), were compared during storage up to 30 days. Additionally, bacterial colonisation was determined by mass spectrometry fingerprinting.RESULTS: Twenty-six cases without involvement of exogenous GHB were examined. GHB concentrations (by specimen) at day 0 were 3.9-22.1 mg/L (VB), 6.6-33.3 mg/L (HB), < 0.5-18.1 mg/L (U), 1.1-10.4 mg/L (CSF) and 1.7-22.0 mg/L (VH). At 4 °C, concentrations increased at day 30 to 5.6-74.5 mg/L (VB), 4.6-76.5 mg/L (HB) and < 0.5-21.3 mg/L (U). At RT, concentrations rose to < 0.5-38.5 mg/L (VB), 1.2-94.6 mg/L (HB) and < 0.5-37.5 mg/L (U) at day 30. In CSF, at RT, an increase up to < 0.5-21.2 mg/L was measured, and at 4 °C, a decrease occurred (< 0.5-6.5 mg/L). GHB concentrations in VH remained stable at both temperatures (1.2-20.9 mg/L and < 0.5-26.2 mg/L). The increase of GHB in HB samples with NaF was significantly lower than that without preservation. No correlation was found between the bacterial colonisation and extent of GHB concentration changes.CONCLUSION: GHB concentrations can significantly increase in post-mortem HB, VB and U samples, depending on storage time, temperature and inter-individual differences. Results in CSF, VH, S and/or specimens with NaF are less affected.",
author = "Jana Kietzerow and Benjamin Otto and N Wilke and H Rohde and Stefanie Iwersen-Bergmann and Hilke Andresen-Streichert",
year = "2019",
month = oct,
doi = "10.1007/s00414-019-02150-w",
language = "English",
volume = "2019",
pages = "205--215",
journal = "INT J LEGAL MED",
issn = "0937-9827",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - The Challenge of Post-Mortem GHB Analysis: Storage Conditions and Specimen Types Are Both Important

AU - Kietzerow, Jana

AU - Otto, Benjamin

AU - Wilke, N

AU - Rohde, H

AU - Iwersen-Bergmann, Stefanie

AU - Andresen-Streichert, Hilke

PY - 2019/10

Y1 - 2019/10

N2 - BACKGROUND: For the interpretation of concentrations of gamma-hydroxybutyrate (GHB) in post-mortem specimens, a possible increase due to post-mortem generation in the body and in vitro has to be considered. The influence of different storage conditions and the specimen type was investigated.METHOD AND MATERIAL: Post-mortem GHB concentrations in femoral venous blood (VB), heart blood (HB), serum (S) from VB, urine (U), cerebrospinal fluid (CSF) and vitreous humour (VH) were determined by gas chromatography-mass spectrometry after derivatisation. Various storage conditions, that is 4 °C or room temperature (RT) and the addition of sodium fluoride (NaF), were compared during storage up to 30 days. Additionally, bacterial colonisation was determined by mass spectrometry fingerprinting.RESULTS: Twenty-six cases without involvement of exogenous GHB were examined. GHB concentrations (by specimen) at day 0 were 3.9-22.1 mg/L (VB), 6.6-33.3 mg/L (HB), < 0.5-18.1 mg/L (U), 1.1-10.4 mg/L (CSF) and 1.7-22.0 mg/L (VH). At 4 °C, concentrations increased at day 30 to 5.6-74.5 mg/L (VB), 4.6-76.5 mg/L (HB) and < 0.5-21.3 mg/L (U). At RT, concentrations rose to < 0.5-38.5 mg/L (VB), 1.2-94.6 mg/L (HB) and < 0.5-37.5 mg/L (U) at day 30. In CSF, at RT, an increase up to < 0.5-21.2 mg/L was measured, and at 4 °C, a decrease occurred (< 0.5-6.5 mg/L). GHB concentrations in VH remained stable at both temperatures (1.2-20.9 mg/L and < 0.5-26.2 mg/L). The increase of GHB in HB samples with NaF was significantly lower than that without preservation. No correlation was found between the bacterial colonisation and extent of GHB concentration changes.CONCLUSION: GHB concentrations can significantly increase in post-mortem HB, VB and U samples, depending on storage time, temperature and inter-individual differences. Results in CSF, VH, S and/or specimens with NaF are less affected.

AB - BACKGROUND: For the interpretation of concentrations of gamma-hydroxybutyrate (GHB) in post-mortem specimens, a possible increase due to post-mortem generation in the body and in vitro has to be considered. The influence of different storage conditions and the specimen type was investigated.METHOD AND MATERIAL: Post-mortem GHB concentrations in femoral venous blood (VB), heart blood (HB), serum (S) from VB, urine (U), cerebrospinal fluid (CSF) and vitreous humour (VH) were determined by gas chromatography-mass spectrometry after derivatisation. Various storage conditions, that is 4 °C or room temperature (RT) and the addition of sodium fluoride (NaF), were compared during storage up to 30 days. Additionally, bacterial colonisation was determined by mass spectrometry fingerprinting.RESULTS: Twenty-six cases without involvement of exogenous GHB were examined. GHB concentrations (by specimen) at day 0 were 3.9-22.1 mg/L (VB), 6.6-33.3 mg/L (HB), < 0.5-18.1 mg/L (U), 1.1-10.4 mg/L (CSF) and 1.7-22.0 mg/L (VH). At 4 °C, concentrations increased at day 30 to 5.6-74.5 mg/L (VB), 4.6-76.5 mg/L (HB) and < 0.5-21.3 mg/L (U). At RT, concentrations rose to < 0.5-38.5 mg/L (VB), 1.2-94.6 mg/L (HB) and < 0.5-37.5 mg/L (U) at day 30. In CSF, at RT, an increase up to < 0.5-21.2 mg/L was measured, and at 4 °C, a decrease occurred (< 0.5-6.5 mg/L). GHB concentrations in VH remained stable at both temperatures (1.2-20.9 mg/L and < 0.5-26.2 mg/L). The increase of GHB in HB samples with NaF was significantly lower than that without preservation. No correlation was found between the bacterial colonisation and extent of GHB concentration changes.CONCLUSION: GHB concentrations can significantly increase in post-mortem HB, VB and U samples, depending on storage time, temperature and inter-individual differences. Results in CSF, VH, S and/or specimens with NaF are less affected.

U2 - 10.1007/s00414-019-02150-w

DO - 10.1007/s00414-019-02150-w

M3 - SCORING: Journal article

C2 - 31598775

VL - 2019

SP - 205

EP - 215

JO - INT J LEGAL MED

JF - INT J LEGAL MED

SN - 0937-9827

ER -