The assimilation of novel information into schemata and its efficient consolidation

Standard

The assimilation of novel information into schemata and its efficient consolidation. / Sommer, Tobias; Hennies, Nora; Lewis, Penelope A; Alink, Arjen.

in: J NEUROSCI, Jahrgang 42, Nr. 30, 27.07.2022, S. 5916-5929.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{e19bc7fae245422a975292d8fc07251a,
title = "The assimilation of novel information into schemata and its efficient consolidation",
abstract = "Schemata enhance memory formation for related novel information. This is true even when this information is neutral with respect to schema-driven expectations. This assimilation of novel information into schemata has been attributed to more effective organizational processing that leads to more referential connections with the activated associative schema network. Animal data suggest that systems consolidation of novel assimilated information is also accelerated. In the current study, we used both multivariate and univariate fMRI analyses to provide further support for these proposals and to elucidate the neural underpinning of these processes. Twenty-eight participants (5 male) overlearned fictitious schemata for 7 weeks and then encoded novel related and control facts in the scanner. These facts were retrieved both immediately and 2 weeks later, also in the scanner. Our results conceptually replicate previous findings with respect to enhanced vmPFC-hippocampus coupling during encoding of novel related information and point to a prior knowledge effect that is distinct from situations where novel information is experienced as congruent or incongruent with a schema. Moreover, the combination of both multivariate and univariate results further specified the proposed contributions of the vmPFC, precuneus and angular gyrus network to the more efficient encoding of schema-related information. In addition, our data provide further evidence for more efficient systems consolidation of such novel schema-related and potentially assimilated information.SIGNIFICANCE STATEMENT Our prior knowledge in a certain domain, often termed schema, heavily influences whether and how we form memories for novel information that can be related to them. The results of the current study show how a ventromedial prefrontal-precuneal-angular network contributes to the more efficient encoding of novel related information. Furthermore, the observed increase in prefrontal-hippocampal coupling during this process points to a critical distinction from the previously described mechanisms supporting the encoding of information that is experienced as congruent with schema-driven expectations. In addition, we find further support for the proposal based on animal data that prior knowledge enhances also the consolidation of schema-related information.",
author = "Tobias Sommer and Nora Hennies and Lewis, {Penelope A} and Arjen Alink",
note = "Copyright {\textcopyright} 2022 the authors.",
year = "2022",
month = jul,
day = "27",
doi = "10.1523/JNEUROSCI.2373-21.2022",
language = "English",
volume = "42",
pages = "5916--5929",
journal = "J NEUROSCI",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "30",

}

RIS

TY - JOUR

T1 - The assimilation of novel information into schemata and its efficient consolidation

AU - Sommer, Tobias

AU - Hennies, Nora

AU - Lewis, Penelope A

AU - Alink, Arjen

N1 - Copyright © 2022 the authors.

PY - 2022/7/27

Y1 - 2022/7/27

N2 - Schemata enhance memory formation for related novel information. This is true even when this information is neutral with respect to schema-driven expectations. This assimilation of novel information into schemata has been attributed to more effective organizational processing that leads to more referential connections with the activated associative schema network. Animal data suggest that systems consolidation of novel assimilated information is also accelerated. In the current study, we used both multivariate and univariate fMRI analyses to provide further support for these proposals and to elucidate the neural underpinning of these processes. Twenty-eight participants (5 male) overlearned fictitious schemata for 7 weeks and then encoded novel related and control facts in the scanner. These facts were retrieved both immediately and 2 weeks later, also in the scanner. Our results conceptually replicate previous findings with respect to enhanced vmPFC-hippocampus coupling during encoding of novel related information and point to a prior knowledge effect that is distinct from situations where novel information is experienced as congruent or incongruent with a schema. Moreover, the combination of both multivariate and univariate results further specified the proposed contributions of the vmPFC, precuneus and angular gyrus network to the more efficient encoding of schema-related information. In addition, our data provide further evidence for more efficient systems consolidation of such novel schema-related and potentially assimilated information.SIGNIFICANCE STATEMENT Our prior knowledge in a certain domain, often termed schema, heavily influences whether and how we form memories for novel information that can be related to them. The results of the current study show how a ventromedial prefrontal-precuneal-angular network contributes to the more efficient encoding of novel related information. Furthermore, the observed increase in prefrontal-hippocampal coupling during this process points to a critical distinction from the previously described mechanisms supporting the encoding of information that is experienced as congruent with schema-driven expectations. In addition, we find further support for the proposal based on animal data that prior knowledge enhances also the consolidation of schema-related information.

AB - Schemata enhance memory formation for related novel information. This is true even when this information is neutral with respect to schema-driven expectations. This assimilation of novel information into schemata has been attributed to more effective organizational processing that leads to more referential connections with the activated associative schema network. Animal data suggest that systems consolidation of novel assimilated information is also accelerated. In the current study, we used both multivariate and univariate fMRI analyses to provide further support for these proposals and to elucidate the neural underpinning of these processes. Twenty-eight participants (5 male) overlearned fictitious schemata for 7 weeks and then encoded novel related and control facts in the scanner. These facts were retrieved both immediately and 2 weeks later, also in the scanner. Our results conceptually replicate previous findings with respect to enhanced vmPFC-hippocampus coupling during encoding of novel related information and point to a prior knowledge effect that is distinct from situations where novel information is experienced as congruent or incongruent with a schema. Moreover, the combination of both multivariate and univariate results further specified the proposed contributions of the vmPFC, precuneus and angular gyrus network to the more efficient encoding of schema-related information. In addition, our data provide further evidence for more efficient systems consolidation of such novel schema-related and potentially assimilated information.SIGNIFICANCE STATEMENT Our prior knowledge in a certain domain, often termed schema, heavily influences whether and how we form memories for novel information that can be related to them. The results of the current study show how a ventromedial prefrontal-precuneal-angular network contributes to the more efficient encoding of novel related information. Furthermore, the observed increase in prefrontal-hippocampal coupling during this process points to a critical distinction from the previously described mechanisms supporting the encoding of information that is experienced as congruent with schema-driven expectations. In addition, we find further support for the proposal based on animal data that prior knowledge enhances also the consolidation of schema-related information.

U2 - 10.1523/JNEUROSCI.2373-21.2022

DO - 10.1523/JNEUROSCI.2373-21.2022

M3 - SCORING: Journal article

C2 - 35710624

VL - 42

SP - 5916

EP - 5929

JO - J NEUROSCI

JF - J NEUROSCI

SN - 0270-6474

IS - 30

ER -