Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band

Standard

Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band. / Meindertsma, Thomas; Kloosterman, Niels A; Engel, Andreas K; Wagenmakers, Eric-Jan; Donner, Tobias H.

in: J NEUROSCI, Jahrgang 38, Nr. 35, 29.08.2018, S. 7600-7610.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{1db31448c96f487fa6e878faab4bb6bc,
title = "Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band",
abstract = "Learning the statistical structure of the environment is crucial for adaptive behavior. Humans and nonhuman decision-makers seem to track such structure through a process of probabilistic inference, which enables predictions about behaviorally relevant events. Deviations from such predictions cause surprise, which in turn helps improve inference. Surprise about the timing of behaviorally relevant sensory events drives phasic responses of neuromodulatory brainstem systems, which project to the cerebral cortex. Here, we developed a computational model-based magnetoencephalography (MEG) approach for mapping the resulting cortical transients across space, time, and frequency, in the human brain (N = 28, 17 female). We used a Bayesian ideal observer model to learn the statistics of the timing of changes in a simple visual detection task. This model yielded quantitative trial-by-trial estimates of temporal surprise. The model-based surprise variable predicted trial-by-trial variations in reaction time more strongly than the externally observable interval timings alone. Trial-by-trial variations in surprise were negatively correlated with the power of cortical population activity measured with MEG. This surprise-related power suppression occurred transiently around the behavioral response, specifically in the beta frequency band. It peaked in parietal and prefrontal cortices, remote from the motor cortical suppression of beta power related to overt report (button press) of change detection. Our results indicate that surprise about sensory event timing transiently suppresses ongoing beta-band oscillations in association cortex. This transient suppression of frontal beta-band oscillations might reflect an active reset triggered by surprise, and is in line with the idea that beta-oscillations help maintain cognitive sets.SIGNIFICANCE STATEMENT The brain continuously tracks the statistical structure of the environment to anticipate behaviorally relevant events. Deviations from such predictions cause surprise, which in turn drives neural activity in subcortical brain regions that project to the cerebral cortex. We used magnetoencephalography in humans to map out surprise-related modulations of cortical population activity across space, time, and frequency. Surprise was elicited by variable timing of visual stimulus changes requiring a behavioral response. Surprise was quantified by means of an ideal observer model. Surprise predicted behavior as well as a transient suppression of beta frequency-band oscillations in frontal cortical regions. Our results are in line with conceptual accounts that have linked neural oscillations in the beta-band to the maintenance of cognitive sets.",
keywords = "Journal Article",
author = "Thomas Meindertsma and Kloosterman, {Niels A} and Engel, {Andreas K} and Eric-Jan Wagenmakers and Donner, {Tobias H}",
note = "Copyright {\textcopyright} 2018 the authors 0270-6474/18/387600-11$15.00/0.",
year = "2018",
month = aug,
day = "29",
doi = "10.1523/JNEUROSCI.0307-18.2018",
language = "English",
volume = "38",
pages = "7600--7610",
journal = "J NEUROSCI",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "35",

}

RIS

TY - JOUR

T1 - Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band

AU - Meindertsma, Thomas

AU - Kloosterman, Niels A

AU - Engel, Andreas K

AU - Wagenmakers, Eric-Jan

AU - Donner, Tobias H

N1 - Copyright © 2018 the authors 0270-6474/18/387600-11$15.00/0.

PY - 2018/8/29

Y1 - 2018/8/29

N2 - Learning the statistical structure of the environment is crucial for adaptive behavior. Humans and nonhuman decision-makers seem to track such structure through a process of probabilistic inference, which enables predictions about behaviorally relevant events. Deviations from such predictions cause surprise, which in turn helps improve inference. Surprise about the timing of behaviorally relevant sensory events drives phasic responses of neuromodulatory brainstem systems, which project to the cerebral cortex. Here, we developed a computational model-based magnetoencephalography (MEG) approach for mapping the resulting cortical transients across space, time, and frequency, in the human brain (N = 28, 17 female). We used a Bayesian ideal observer model to learn the statistics of the timing of changes in a simple visual detection task. This model yielded quantitative trial-by-trial estimates of temporal surprise. The model-based surprise variable predicted trial-by-trial variations in reaction time more strongly than the externally observable interval timings alone. Trial-by-trial variations in surprise were negatively correlated with the power of cortical population activity measured with MEG. This surprise-related power suppression occurred transiently around the behavioral response, specifically in the beta frequency band. It peaked in parietal and prefrontal cortices, remote from the motor cortical suppression of beta power related to overt report (button press) of change detection. Our results indicate that surprise about sensory event timing transiently suppresses ongoing beta-band oscillations in association cortex. This transient suppression of frontal beta-band oscillations might reflect an active reset triggered by surprise, and is in line with the idea that beta-oscillations help maintain cognitive sets.SIGNIFICANCE STATEMENT The brain continuously tracks the statistical structure of the environment to anticipate behaviorally relevant events. Deviations from such predictions cause surprise, which in turn drives neural activity in subcortical brain regions that project to the cerebral cortex. We used magnetoencephalography in humans to map out surprise-related modulations of cortical population activity across space, time, and frequency. Surprise was elicited by variable timing of visual stimulus changes requiring a behavioral response. Surprise was quantified by means of an ideal observer model. Surprise predicted behavior as well as a transient suppression of beta frequency-band oscillations in frontal cortical regions. Our results are in line with conceptual accounts that have linked neural oscillations in the beta-band to the maintenance of cognitive sets.

AB - Learning the statistical structure of the environment is crucial for adaptive behavior. Humans and nonhuman decision-makers seem to track such structure through a process of probabilistic inference, which enables predictions about behaviorally relevant events. Deviations from such predictions cause surprise, which in turn helps improve inference. Surprise about the timing of behaviorally relevant sensory events drives phasic responses of neuromodulatory brainstem systems, which project to the cerebral cortex. Here, we developed a computational model-based magnetoencephalography (MEG) approach for mapping the resulting cortical transients across space, time, and frequency, in the human brain (N = 28, 17 female). We used a Bayesian ideal observer model to learn the statistics of the timing of changes in a simple visual detection task. This model yielded quantitative trial-by-trial estimates of temporal surprise. The model-based surprise variable predicted trial-by-trial variations in reaction time more strongly than the externally observable interval timings alone. Trial-by-trial variations in surprise were negatively correlated with the power of cortical population activity measured with MEG. This surprise-related power suppression occurred transiently around the behavioral response, specifically in the beta frequency band. It peaked in parietal and prefrontal cortices, remote from the motor cortical suppression of beta power related to overt report (button press) of change detection. Our results indicate that surprise about sensory event timing transiently suppresses ongoing beta-band oscillations in association cortex. This transient suppression of frontal beta-band oscillations might reflect an active reset triggered by surprise, and is in line with the idea that beta-oscillations help maintain cognitive sets.SIGNIFICANCE STATEMENT The brain continuously tracks the statistical structure of the environment to anticipate behaviorally relevant events. Deviations from such predictions cause surprise, which in turn drives neural activity in subcortical brain regions that project to the cerebral cortex. We used magnetoencephalography in humans to map out surprise-related modulations of cortical population activity across space, time, and frequency. Surprise was elicited by variable timing of visual stimulus changes requiring a behavioral response. Surprise was quantified by means of an ideal observer model. Surprise predicted behavior as well as a transient suppression of beta frequency-band oscillations in frontal cortical regions. Our results are in line with conceptual accounts that have linked neural oscillations in the beta-band to the maintenance of cognitive sets.

KW - Journal Article

U2 - 10.1523/JNEUROSCI.0307-18.2018

DO - 10.1523/JNEUROSCI.0307-18.2018

M3 - SCORING: Journal article

C2 - 30030396

VL - 38

SP - 7600

EP - 7610

JO - J NEUROSCI

JF - J NEUROSCI

SN - 0270-6474

IS - 35

ER -