Subcellular localisation of human inositol 1,4,5-trisphosphate 3-kinase C: species-specific use of alternative export sites for nucleo-cytoplasmic shuttling indicates divergent roles of the catalytic and N-terminal domains.
Standard
Subcellular localisation of human inositol 1,4,5-trisphosphate 3-kinase C: species-specific use of alternative export sites for nucleo-cytoplasmic shuttling indicates divergent roles of the catalytic and N-terminal domains. / Nalaskowski, Marcus; Windhorst, Sabine; Stockebrand, Malte C; Mayr, Georg W.
in: BIOL CHEM, Jahrgang 387, Nr. 5, 5, 2006, S. 583-593.Publikationen: SCORING: Beitrag in Fachzeitschrift/Zeitung › SCORING: Zeitschriftenaufsatz › Forschung › Begutachtung
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Subcellular localisation of human inositol 1,4,5-trisphosphate 3-kinase C: species-specific use of alternative export sites for nucleo-cytoplasmic shuttling indicates divergent roles of the catalytic and N-terminal domains.
AU - Nalaskowski, Marcus
AU - Windhorst, Sabine
AU - Stockebrand, Malte C
AU - Mayr, Georg W.
PY - 2006
Y1 - 2006
N2 - The three isoforms of human Ins(1,4,5)P3 3-kinase (IP3K) show remarkable differences in their intracellular targeting. Whereas predominant targeting to the cytoskeleton and endoplasmic reticulum has been shown for IP3K-A and IP3K-B, rat IP3K-C shuttles actively between the nucleus and cytoplasm. In the present study we examined the expression and intracellular localisation of endogenous IP3K-C in different mammalian cell lines using an isoform-specific antibody. In addition, human IP3K-C, showing remarkable differences to its rat homologue in the N-terminal targeting domain, was tagged with EGFP and used to examine active transport mechanisms into and out of the nucleus. We found both a nuclear import activity residing in its N-terminal domain and a nuclear export activity sensitive to treatment with leptomycin B. Different from the rat isoform, an exportin 1-dependent nuclear export site of the human enzyme resides outside the N-terminal targeting domain in the catalytic enzyme domain. A phylogenetic survey of vertebrate IP3K sequences indicates that in each of the three isoforms a nuclear export signal has evolved in the catalytic domain either de novo (IP3K-A) or as a substitute for an earlier evolved corresponding N-terminal signal (IP3K-B and IP3K-C). In higher vertebrates, and in particular in primates, re-export of nuclear IP3K activity may be guaranteed by the mechanism discovered.
AB - The three isoforms of human Ins(1,4,5)P3 3-kinase (IP3K) show remarkable differences in their intracellular targeting. Whereas predominant targeting to the cytoskeleton and endoplasmic reticulum has been shown for IP3K-A and IP3K-B, rat IP3K-C shuttles actively between the nucleus and cytoplasm. In the present study we examined the expression and intracellular localisation of endogenous IP3K-C in different mammalian cell lines using an isoform-specific antibody. In addition, human IP3K-C, showing remarkable differences to its rat homologue in the N-terminal targeting domain, was tagged with EGFP and used to examine active transport mechanisms into and out of the nucleus. We found both a nuclear import activity residing in its N-terminal domain and a nuclear export activity sensitive to treatment with leptomycin B. Different from the rat isoform, an exportin 1-dependent nuclear export site of the human enzyme resides outside the N-terminal targeting domain in the catalytic enzyme domain. A phylogenetic survey of vertebrate IP3K sequences indicates that in each of the three isoforms a nuclear export signal has evolved in the catalytic domain either de novo (IP3K-A) or as a substitute for an earlier evolved corresponding N-terminal signal (IP3K-B and IP3K-C). In higher vertebrates, and in particular in primates, re-export of nuclear IP3K activity may be guaranteed by the mechanism discovered.
M3 - SCORING: Zeitschriftenaufsatz
VL - 387
SP - 583
EP - 593
JO - BIOL CHEM
JF - BIOL CHEM
SN - 1431-6730
IS - 5
M1 - 5
ER -