Steroid effects on central neurons and implications for psychiatric and neurological disorders.

Standard

Steroid effects on central neurons and implications for psychiatric and neurological disorders. / Holsboer, F; Grasser, A; Friess, E; Wiedemann, Klaus.

in: ANN NY ACAD SCI, Jahrgang 746, 1994, S. 345-361.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{f1161e69fed14060a182f045907d89ef,
title = "Steroid effects on central neurons and implications for psychiatric and neurological disorders.",
abstract = "Acute and chronic stress as well as a number of psychiatric and neurological disorders are accompanied by profound disturbances of the HPA system. These neuroendocrine alterations act back on the central nervous tissue mainly via corticosteroids-affecting glucocorticoid and mineralocorticoid receptors. The major conclusions drawn from studies probing these receptors in clinical investigations are: (1) In many such conditions central corticosteroid receptors are weakened in their capacity to curtail spontaneous and stress-elevated corticosteroid levels; (2) the combined DEX-CRH test is the best neuroendocrine tool currently available for identifying HPA abnormalities in psychiatric patients; (3) in depression the decreased corticosteroid receptor capacity in transient, and antidepressants act through reinstatement of GR and MR function probably resulting in reduced hypothalamic CRH and AVP production; (4) several neurological disorders such as MS and HIV infection are often accompanied by altered HPA function, which has therapeutic implications; and (5) various corticosteroids, their biosynthetic precursors and their metabolites have differentiable effects on the sleep EEG, which can be attributed to their mode of action; specifically, steroids such as pregnenolone and DHEA most likely are produced in glia cells and act in a paracrine fashion at neurons, thus modifying the sleep EEG in humans in a manner that suggests their potential as memory enhancers.",
author = "F Holsboer and A Grasser and E Friess and Klaus Wiedemann",
year = "1994",
language = "Deutsch",
volume = "746",
pages = "345--361",
journal = "ANN NY ACAD SCI",
issn = "0077-8923",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - Steroid effects on central neurons and implications for psychiatric and neurological disorders.

AU - Holsboer, F

AU - Grasser, A

AU - Friess, E

AU - Wiedemann, Klaus

PY - 1994

Y1 - 1994

N2 - Acute and chronic stress as well as a number of psychiatric and neurological disorders are accompanied by profound disturbances of the HPA system. These neuroendocrine alterations act back on the central nervous tissue mainly via corticosteroids-affecting glucocorticoid and mineralocorticoid receptors. The major conclusions drawn from studies probing these receptors in clinical investigations are: (1) In many such conditions central corticosteroid receptors are weakened in their capacity to curtail spontaneous and stress-elevated corticosteroid levels; (2) the combined DEX-CRH test is the best neuroendocrine tool currently available for identifying HPA abnormalities in psychiatric patients; (3) in depression the decreased corticosteroid receptor capacity in transient, and antidepressants act through reinstatement of GR and MR function probably resulting in reduced hypothalamic CRH and AVP production; (4) several neurological disorders such as MS and HIV infection are often accompanied by altered HPA function, which has therapeutic implications; and (5) various corticosteroids, their biosynthetic precursors and their metabolites have differentiable effects on the sleep EEG, which can be attributed to their mode of action; specifically, steroids such as pregnenolone and DHEA most likely are produced in glia cells and act in a paracrine fashion at neurons, thus modifying the sleep EEG in humans in a manner that suggests their potential as memory enhancers.

AB - Acute and chronic stress as well as a number of psychiatric and neurological disorders are accompanied by profound disturbances of the HPA system. These neuroendocrine alterations act back on the central nervous tissue mainly via corticosteroids-affecting glucocorticoid and mineralocorticoid receptors. The major conclusions drawn from studies probing these receptors in clinical investigations are: (1) In many such conditions central corticosteroid receptors are weakened in their capacity to curtail spontaneous and stress-elevated corticosteroid levels; (2) the combined DEX-CRH test is the best neuroendocrine tool currently available for identifying HPA abnormalities in psychiatric patients; (3) in depression the decreased corticosteroid receptor capacity in transient, and antidepressants act through reinstatement of GR and MR function probably resulting in reduced hypothalamic CRH and AVP production; (4) several neurological disorders such as MS and HIV infection are often accompanied by altered HPA function, which has therapeutic implications; and (5) various corticosteroids, their biosynthetic precursors and their metabolites have differentiable effects on the sleep EEG, which can be attributed to their mode of action; specifically, steroids such as pregnenolone and DHEA most likely are produced in glia cells and act in a paracrine fashion at neurons, thus modifying the sleep EEG in humans in a manner that suggests their potential as memory enhancers.

M3 - SCORING: Zeitschriftenaufsatz

VL - 746

SP - 345

EP - 361

JO - ANN NY ACAD SCI

JF - ANN NY ACAD SCI

SN - 0077-8923

ER -