Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord

Standard

Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord. / Conklin, Chris J; Middleton, Devon M; Alizadeh, Mahdi; Finsterbusch, Jürgen; Raunig, David L; Faro, Scott H; Shah, Pallav; Krisa, Laura; Sinko, Rebecca; Delalic, Joan Z; Mulcahey, M J; Mohamed, Feroze B.

in: NEUROIMAGE-CLIN, Jahrgang 11, 2016, S. 61-7.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

Conklin, CJ, Middleton, DM, Alizadeh, M, Finsterbusch, J, Raunig, DL, Faro, SH, Shah, P, Krisa, L, Sinko, R, Delalic, JZ, Mulcahey, MJ & Mohamed, FB 2016, 'Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord', NEUROIMAGE-CLIN, Jg. 11, S. 61-7. https://doi.org/10.1016/j.nicl.2016.01.009

APA

Conklin, C. J., Middleton, D. M., Alizadeh, M., Finsterbusch, J., Raunig, D. L., Faro, S. H., Shah, P., Krisa, L., Sinko, R., Delalic, J. Z., Mulcahey, M. J., & Mohamed, F. B. (2016). Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord. NEUROIMAGE-CLIN, 11, 61-7. https://doi.org/10.1016/j.nicl.2016.01.009

Vancouver

Bibtex

@article{4236b0490c3e4725ab8ade2473c98799,
title = "Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord",
abstract = "Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms.",
keywords = "Adolescent, Algorithms, Brain, Child, Diffusion Magnetic Resonance Imaging, Diffusion Tensor Imaging, Female, Humans, Image Processing, Computer-Assisted, Male, Spinal Cord Diseases, Journal Article, Research Support, N.I.H., Extramural",
author = "Conklin, {Chris J} and Middleton, {Devon M} and Mahdi Alizadeh and J{\"u}rgen Finsterbusch and Raunig, {David L} and Faro, {Scott H} and Pallav Shah and Laura Krisa and Rebecca Sinko and Delalic, {Joan Z} and Mulcahey, {M J} and Mohamed, {Feroze B}",
year = "2016",
doi = "10.1016/j.nicl.2016.01.009",
language = "English",
volume = "11",
pages = "61--7",
journal = "NEUROIMAGE-CLIN",
issn = "2213-1582",
publisher = "Elsevier BV",

}

RIS

TY - JOUR

T1 - Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord

AU - Conklin, Chris J

AU - Middleton, Devon M

AU - Alizadeh, Mahdi

AU - Finsterbusch, Jürgen

AU - Raunig, David L

AU - Faro, Scott H

AU - Shah, Pallav

AU - Krisa, Laura

AU - Sinko, Rebecca

AU - Delalic, Joan Z

AU - Mulcahey, M J

AU - Mohamed, Feroze B

PY - 2016

Y1 - 2016

N2 - Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms.

AB - Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms.

KW - Adolescent

KW - Algorithms

KW - Brain

KW - Child

KW - Diffusion Magnetic Resonance Imaging

KW - Diffusion Tensor Imaging

KW - Female

KW - Humans

KW - Image Processing, Computer-Assisted

KW - Male

KW - Spinal Cord Diseases

KW - Journal Article

KW - Research Support, N.I.H., Extramural

U2 - 10.1016/j.nicl.2016.01.009

DO - 10.1016/j.nicl.2016.01.009

M3 - SCORING: Journal article

C2 - 26909329

VL - 11

SP - 61

EP - 67

JO - NEUROIMAGE-CLIN

JF - NEUROIMAGE-CLIN

SN - 2213-1582

ER -