SGK1 dependence of insulin induced hypokalemia.

Standard

SGK1 dependence of insulin induced hypokalemia. / Boini, Krishna M; Graf, Dirk; Kuhl, Dietmar; Häussinger, Dieter; Lang, Florian.

in: PFLUG ARCH EUR J PHY, Jahrgang 457, Nr. 4, 4, 2009, S. 955-961.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

Boini, KM, Graf, D, Kuhl, D, Häussinger, D & Lang, F 2009, 'SGK1 dependence of insulin induced hypokalemia.', PFLUG ARCH EUR J PHY, Jg. 457, Nr. 4, 4, S. 955-961. <http://www.ncbi.nlm.nih.gov/pubmed/18665390?dopt=Citation>

APA

Vancouver

Boini KM, Graf D, Kuhl D, Häussinger D, Lang F. SGK1 dependence of insulin induced hypokalemia. PFLUG ARCH EUR J PHY. 2009;457(4):955-961. 4.

Bibtex

@article{7c30b006f7a94a5d831ce3dd42dd82de,
title = "SGK1 dependence of insulin induced hypokalemia.",
abstract = "Insulin stimulates cellular K+ uptake leading to hypokalemia. Cellular K+ uptake is accomplished by parallel stimulation of Na+/H+ exchange, Na+,K+,2Cl- co-transport, and Na+/K+ ATPase and leads to cell swelling, a prerequisite for several metabolic effects of the hormone. Little is known about underlying signaling. Insulin is known to activate the serum and glucocorticoid-inducible kinase SGK1, which in turn enhances the activity of all three transport proteins. The present study thus explored the contribution of SGK1 to insulin-induced hypokalemia. To this end, gene-targeted mice lacking SGK1 (sgk1-/-) and their wild-type littermates (sgk1+/+) have been infused with insulin (2 mU kg(-1) min(-1)) and glucose at rates leaving the plasma glucose concentration constant. Moreover, isolated liver perfusion experiments have been performed to determine stimulation of cellular K+ uptake by insulin (100 nM). As a result, combined glucose and insulin infusion significantly decreased plasma K+ concentration despite a significant decrease of urinary K+ excretion in sgk1+/+ but not in sgk1-/- mice. Accordingly, the plasma K+ concentration was within 60 min significantly lower in sgk1+/+ than in sgk1-/- mice. In isolated liver perfusion experiments, cellular K+ uptake was stimulated by insulin (100 nM), an effect blunted by 72% in sgk1-/- mice as compared to sgk1+/+ mice. Accordingly, insulin-induced cell hydration was 63% lower in sgk1-/- mice than in sgk1+/+ mice. Moreover, volume regulatory K+ release was 31% smaller in sgk1-/- mice than in sgk1+/+ mice. In conclusion, the serum and glucocorticoid-inducible kinase SGK1 participates in the signaling mediating the hypokalemic effect of insulin.",
author = "Boini, {Krishna M} and Dirk Graf and Dietmar Kuhl and Dieter H{\"a}ussinger and Florian Lang",
year = "2009",
language = "Deutsch",
volume = "457",
pages = "955--961",
journal = "PFLUG ARCH EUR J PHY",
issn = "0031-6768",
publisher = "Springer",
number = "4",

}

RIS

TY - JOUR

T1 - SGK1 dependence of insulin induced hypokalemia.

AU - Boini, Krishna M

AU - Graf, Dirk

AU - Kuhl, Dietmar

AU - Häussinger, Dieter

AU - Lang, Florian

PY - 2009

Y1 - 2009

N2 - Insulin stimulates cellular K+ uptake leading to hypokalemia. Cellular K+ uptake is accomplished by parallel stimulation of Na+/H+ exchange, Na+,K+,2Cl- co-transport, and Na+/K+ ATPase and leads to cell swelling, a prerequisite for several metabolic effects of the hormone. Little is known about underlying signaling. Insulin is known to activate the serum and glucocorticoid-inducible kinase SGK1, which in turn enhances the activity of all three transport proteins. The present study thus explored the contribution of SGK1 to insulin-induced hypokalemia. To this end, gene-targeted mice lacking SGK1 (sgk1-/-) and their wild-type littermates (sgk1+/+) have been infused with insulin (2 mU kg(-1) min(-1)) and glucose at rates leaving the plasma glucose concentration constant. Moreover, isolated liver perfusion experiments have been performed to determine stimulation of cellular K+ uptake by insulin (100 nM). As a result, combined glucose and insulin infusion significantly decreased plasma K+ concentration despite a significant decrease of urinary K+ excretion in sgk1+/+ but not in sgk1-/- mice. Accordingly, the plasma K+ concentration was within 60 min significantly lower in sgk1+/+ than in sgk1-/- mice. In isolated liver perfusion experiments, cellular K+ uptake was stimulated by insulin (100 nM), an effect blunted by 72% in sgk1-/- mice as compared to sgk1+/+ mice. Accordingly, insulin-induced cell hydration was 63% lower in sgk1-/- mice than in sgk1+/+ mice. Moreover, volume regulatory K+ release was 31% smaller in sgk1-/- mice than in sgk1+/+ mice. In conclusion, the serum and glucocorticoid-inducible kinase SGK1 participates in the signaling mediating the hypokalemic effect of insulin.

AB - Insulin stimulates cellular K+ uptake leading to hypokalemia. Cellular K+ uptake is accomplished by parallel stimulation of Na+/H+ exchange, Na+,K+,2Cl- co-transport, and Na+/K+ ATPase and leads to cell swelling, a prerequisite for several metabolic effects of the hormone. Little is known about underlying signaling. Insulin is known to activate the serum and glucocorticoid-inducible kinase SGK1, which in turn enhances the activity of all three transport proteins. The present study thus explored the contribution of SGK1 to insulin-induced hypokalemia. To this end, gene-targeted mice lacking SGK1 (sgk1-/-) and their wild-type littermates (sgk1+/+) have been infused with insulin (2 mU kg(-1) min(-1)) and glucose at rates leaving the plasma glucose concentration constant. Moreover, isolated liver perfusion experiments have been performed to determine stimulation of cellular K+ uptake by insulin (100 nM). As a result, combined glucose and insulin infusion significantly decreased plasma K+ concentration despite a significant decrease of urinary K+ excretion in sgk1+/+ but not in sgk1-/- mice. Accordingly, the plasma K+ concentration was within 60 min significantly lower in sgk1+/+ than in sgk1-/- mice. In isolated liver perfusion experiments, cellular K+ uptake was stimulated by insulin (100 nM), an effect blunted by 72% in sgk1-/- mice as compared to sgk1+/+ mice. Accordingly, insulin-induced cell hydration was 63% lower in sgk1-/- mice than in sgk1+/+ mice. Moreover, volume regulatory K+ release was 31% smaller in sgk1-/- mice than in sgk1+/+ mice. In conclusion, the serum and glucocorticoid-inducible kinase SGK1 participates in the signaling mediating the hypokalemic effect of insulin.

M3 - SCORING: Zeitschriftenaufsatz

VL - 457

SP - 955

EP - 961

JO - PFLUG ARCH EUR J PHY

JF - PFLUG ARCH EUR J PHY

SN - 0031-6768

IS - 4

M1 - 4

ER -