Rin1 interacts with signal-transducing adaptor molecule (STAM) and mediates epidermal growth factor receptor trafficking and degradation.

Standard

Rin1 interacts with signal-transducing adaptor molecule (STAM) and mediates epidermal growth factor receptor trafficking and degradation. / Kong, Chen; Su, Xiong; Chen, Pin-I; Stahl, Phillip.

in: J BIOL CHEM, Jahrgang 282, Nr. 20, 20, 2007, S. 15294-15301.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{ed8632ce42d94750890e9d240019f388,
title = "Rin1 interacts with signal-transducing adaptor molecule (STAM) and mediates epidermal growth factor receptor trafficking and degradation.",
abstract = "Rin1, the prototype of a new family of multidomain Rab5 exchange factors, has been shown to play an important role in the endocytosis of the epidermal growth factor receptor (EGFR). Herein, we examined the role of Rin1 in the down-regulation of EGFR following EGF stimulation. We observed that overexpression of Rin1 accelerates EGFR degradation in EGF-stimulated cells. In concordance, depletion of endogenous Rin1 by RNA interference resulted in a substantial reduction of EGFR degradation. We showed that Rin1 interacts with signal-transducing adaptor molecule 2 (STAM2), a protein that associates with hepatocyte growth factor-regulated substrate and plays a key role in the endosomal sorting machinery. Green fluorescent protein (GFP)-Rin1 co-localizes with hemagglutinin (HA)-STAM2 and with endogenous hepatocyte growth factor-regulated substrate. Furthermore, wild type STAM2, but not a deletion mutant lacking the SH3 domain, co-immunoprecipitates with endogenous Rin1. This interaction is dependent on the proline-rich domain (PRD) of Rin1 as Rin1DeltaPRD, a mutant lacking the PRD, does not interact with STAM2. Moreover, EGFR degradation was not accelerated by expression of the Rin1DeltaPRD mutant. Together these results suggest that Rin1 regulates EGFR degradation in cooperation with STAM, defining a novel role for Rin1 in regulating endosomal trafficking.",
author = "Chen Kong and Xiong Su and Pin-I Chen and Phillip Stahl",
year = "2007",
language = "Deutsch",
volume = "282",
pages = "15294--15301",
journal = "J BIOL CHEM",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "20",

}

RIS

TY - JOUR

T1 - Rin1 interacts with signal-transducing adaptor molecule (STAM) and mediates epidermal growth factor receptor trafficking and degradation.

AU - Kong, Chen

AU - Su, Xiong

AU - Chen, Pin-I

AU - Stahl, Phillip

PY - 2007

Y1 - 2007

N2 - Rin1, the prototype of a new family of multidomain Rab5 exchange factors, has been shown to play an important role in the endocytosis of the epidermal growth factor receptor (EGFR). Herein, we examined the role of Rin1 in the down-regulation of EGFR following EGF stimulation. We observed that overexpression of Rin1 accelerates EGFR degradation in EGF-stimulated cells. In concordance, depletion of endogenous Rin1 by RNA interference resulted in a substantial reduction of EGFR degradation. We showed that Rin1 interacts with signal-transducing adaptor molecule 2 (STAM2), a protein that associates with hepatocyte growth factor-regulated substrate and plays a key role in the endosomal sorting machinery. Green fluorescent protein (GFP)-Rin1 co-localizes with hemagglutinin (HA)-STAM2 and with endogenous hepatocyte growth factor-regulated substrate. Furthermore, wild type STAM2, but not a deletion mutant lacking the SH3 domain, co-immunoprecipitates with endogenous Rin1. This interaction is dependent on the proline-rich domain (PRD) of Rin1 as Rin1DeltaPRD, a mutant lacking the PRD, does not interact with STAM2. Moreover, EGFR degradation was not accelerated by expression of the Rin1DeltaPRD mutant. Together these results suggest that Rin1 regulates EGFR degradation in cooperation with STAM, defining a novel role for Rin1 in regulating endosomal trafficking.

AB - Rin1, the prototype of a new family of multidomain Rab5 exchange factors, has been shown to play an important role in the endocytosis of the epidermal growth factor receptor (EGFR). Herein, we examined the role of Rin1 in the down-regulation of EGFR following EGF stimulation. We observed that overexpression of Rin1 accelerates EGFR degradation in EGF-stimulated cells. In concordance, depletion of endogenous Rin1 by RNA interference resulted in a substantial reduction of EGFR degradation. We showed that Rin1 interacts with signal-transducing adaptor molecule 2 (STAM2), a protein that associates with hepatocyte growth factor-regulated substrate and plays a key role in the endosomal sorting machinery. Green fluorescent protein (GFP)-Rin1 co-localizes with hemagglutinin (HA)-STAM2 and with endogenous hepatocyte growth factor-regulated substrate. Furthermore, wild type STAM2, but not a deletion mutant lacking the SH3 domain, co-immunoprecipitates with endogenous Rin1. This interaction is dependent on the proline-rich domain (PRD) of Rin1 as Rin1DeltaPRD, a mutant lacking the PRD, does not interact with STAM2. Moreover, EGFR degradation was not accelerated by expression of the Rin1DeltaPRD mutant. Together these results suggest that Rin1 regulates EGFR degradation in cooperation with STAM, defining a novel role for Rin1 in regulating endosomal trafficking.

M3 - SCORING: Zeitschriftenaufsatz

VL - 282

SP - 15294

EP - 15301

JO - J BIOL CHEM

JF - J BIOL CHEM

SN - 0021-9258

IS - 20

M1 - 20

ER -