Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli

Standard

Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. / Christner, Martin; Trusch, Maria; Rohde, Holger; Kwiatkowski, Marcel; Schlüter, Hartmut; Wolters, Manuel; Aepfelbacher, Martin; Hentschke, Moritz.

in: PLOS ONE, Jahrgang 9, Nr. 7, 08.07.2014, S. e101924.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{b3da1fd420074d638ff88190d697ae98,
title = "Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli",
abstract = "BACKGROUND: In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification.METHODS: Specific peaks in the outbreak strain's spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak.RESULTS: Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates.CONCLUSIONS: MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.",
author = "Martin Christner and Maria Trusch and Holger Rohde and Marcel Kwiatkowski and Hartmut Schl{\"u}ter and Manuel Wolters and Martin Aepfelbacher and Moritz Hentschke",
year = "2014",
month = jul,
day = "8",
doi = "10.1371/journal.pone.0101924",
language = "English",
volume = "9",
pages = "e101924",
journal = "PLOS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "7",

}

RIS

TY - JOUR

T1 - Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli

AU - Christner, Martin

AU - Trusch, Maria

AU - Rohde, Holger

AU - Kwiatkowski, Marcel

AU - Schlüter, Hartmut

AU - Wolters, Manuel

AU - Aepfelbacher, Martin

AU - Hentschke, Moritz

PY - 2014/7/8

Y1 - 2014/7/8

N2 - BACKGROUND: In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification.METHODS: Specific peaks in the outbreak strain's spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak.RESULTS: Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates.CONCLUSIONS: MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.

AB - BACKGROUND: In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification.METHODS: Specific peaks in the outbreak strain's spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak.RESULTS: Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates.CONCLUSIONS: MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.

U2 - 10.1371/journal.pone.0101924

DO - 10.1371/journal.pone.0101924

M3 - SCORING: Journal article

C2 - 25003758

VL - 9

SP - e101924

JO - PLOS ONE

JF - PLOS ONE

SN - 1932-6203

IS - 7

ER -