Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice.

Standard

Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice. / Ranly, Don M; Lohmann, Christoph; Andreacchio, Domenico; Boyan, Barbara D; Schwartz, Zvi.

in: J BONE JOINT SURG AM, Jahrgang 89, Nr. 1, 1, 2007, S. 139-147.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Ranly DM, Lohmann C, Andreacchio D, Boyan BD, Schwartz Z. Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice. J BONE JOINT SURG AM. 2007;89(1):139-147. 1.

Bibtex

@article{608c4a719a42421eaf10c0e22256be7a,
title = "Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice.",
abstract = "BACKGROUND: It is unclear whether platelet-rich plasma is a clinically effective adjunct to osteoinductive agents such as demineralized bone matrix. It contains platelet-derived growth factor (PDGF), which decreases osteoinduction by human demineralized bone matrix in nude-mouse muscle, suggesting that platelet-rich plasma may also have a negative impact. This study tested the hypothesis that platelet-rich plasma reduces demineralized bone matrix-induced bone formation and that this effect varies with donor-dependent differences in platelet-rich plasma and demineralized bone matrix. METHODS: Human platelet-rich plasma was prepared from blood from six men (average age [and standard error of the mean], 29.2 +/- 2.4 years). Platelet numbers were determined, and growth factors were quantified before and after platelet activation. Human demineralized bone matrix from two donors (demineralized bone matrix-1 and demineralized bone matrix-2) was mixed with activated platelet-rich plasma and was implanted bilaterally in the gastrocnemius muscle in eighty male nude mice (eight implants per variable). Fifty-six days after implantation, the hindlimb calf muscles were harvested for histological analysis. Osteoinduction was evaluated with use of a qualitative score and morphometric measurements of ossicle size, new bone formation, and residual demineralized bone matrix. RESULTS: Compared with platelet-poor plasma, platelet-rich plasma preparations exhibited a fourfold increase in the platelet count, a fifteenfold increase in the amount of transforming growth factor-beta, a sixfold increase in the amount of PDGF-BB, a fivefold increase in the amount of PDGF-AA, and a twofold increase in the amount of PDGF-AB. Demineralized bone matrix-1 was more osteoinductive than demineralized bone matrix-2, as determined on the basis of a greater ossicle area. The effect of platelet-rich plasma was either neutral or inhibitory depending on the demineralized bone matrix batch. When used with demineralized bone matrix-1, platelet-rich plasma did not alter the qualitative score or overall ossicle size, but it decreased the new bone area. When used with demineralized bone matrix-2, platelet-rich plasma reduced the qualitative score, ossicle area, and new bone area and increased the amount of residual demineralized bone matrix. The effects on osteoinduction also varied with the donor of the platelet-rich plasma. CONCLUSIONS: Platelet-rich plasma decreased the osteoinductivity of demineralized bone matrix implanted in immunocom-promised mice, and the activities of both demineralized bone matrix and platelet-rich plasma were donor-dependent.",
author = "Ranly, {Don M} and Christoph Lohmann and Domenico Andreacchio and Boyan, {Barbara D} and Zvi Schwartz",
year = "2007",
language = "Deutsch",
volume = "89",
pages = "139--147",
journal = "J BONE JOINT SURG AM",
issn = "0021-9355",
publisher = "Journal of Bone and Joint Surgery Inc.",
number = "1",

}

RIS

TY - JOUR

T1 - Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice.

AU - Ranly, Don M

AU - Lohmann, Christoph

AU - Andreacchio, Domenico

AU - Boyan, Barbara D

AU - Schwartz, Zvi

PY - 2007

Y1 - 2007

N2 - BACKGROUND: It is unclear whether platelet-rich plasma is a clinically effective adjunct to osteoinductive agents such as demineralized bone matrix. It contains platelet-derived growth factor (PDGF), which decreases osteoinduction by human demineralized bone matrix in nude-mouse muscle, suggesting that platelet-rich plasma may also have a negative impact. This study tested the hypothesis that platelet-rich plasma reduces demineralized bone matrix-induced bone formation and that this effect varies with donor-dependent differences in platelet-rich plasma and demineralized bone matrix. METHODS: Human platelet-rich plasma was prepared from blood from six men (average age [and standard error of the mean], 29.2 +/- 2.4 years). Platelet numbers were determined, and growth factors were quantified before and after platelet activation. Human demineralized bone matrix from two donors (demineralized bone matrix-1 and demineralized bone matrix-2) was mixed with activated platelet-rich plasma and was implanted bilaterally in the gastrocnemius muscle in eighty male nude mice (eight implants per variable). Fifty-six days after implantation, the hindlimb calf muscles were harvested for histological analysis. Osteoinduction was evaluated with use of a qualitative score and morphometric measurements of ossicle size, new bone formation, and residual demineralized bone matrix. RESULTS: Compared with platelet-poor plasma, platelet-rich plasma preparations exhibited a fourfold increase in the platelet count, a fifteenfold increase in the amount of transforming growth factor-beta, a sixfold increase in the amount of PDGF-BB, a fivefold increase in the amount of PDGF-AA, and a twofold increase in the amount of PDGF-AB. Demineralized bone matrix-1 was more osteoinductive than demineralized bone matrix-2, as determined on the basis of a greater ossicle area. The effect of platelet-rich plasma was either neutral or inhibitory depending on the demineralized bone matrix batch. When used with demineralized bone matrix-1, platelet-rich plasma did not alter the qualitative score or overall ossicle size, but it decreased the new bone area. When used with demineralized bone matrix-2, platelet-rich plasma reduced the qualitative score, ossicle area, and new bone area and increased the amount of residual demineralized bone matrix. The effects on osteoinduction also varied with the donor of the platelet-rich plasma. CONCLUSIONS: Platelet-rich plasma decreased the osteoinductivity of demineralized bone matrix implanted in immunocom-promised mice, and the activities of both demineralized bone matrix and platelet-rich plasma were donor-dependent.

AB - BACKGROUND: It is unclear whether platelet-rich plasma is a clinically effective adjunct to osteoinductive agents such as demineralized bone matrix. It contains platelet-derived growth factor (PDGF), which decreases osteoinduction by human demineralized bone matrix in nude-mouse muscle, suggesting that platelet-rich plasma may also have a negative impact. This study tested the hypothesis that platelet-rich plasma reduces demineralized bone matrix-induced bone formation and that this effect varies with donor-dependent differences in platelet-rich plasma and demineralized bone matrix. METHODS: Human platelet-rich plasma was prepared from blood from six men (average age [and standard error of the mean], 29.2 +/- 2.4 years). Platelet numbers were determined, and growth factors were quantified before and after platelet activation. Human demineralized bone matrix from two donors (demineralized bone matrix-1 and demineralized bone matrix-2) was mixed with activated platelet-rich plasma and was implanted bilaterally in the gastrocnemius muscle in eighty male nude mice (eight implants per variable). Fifty-six days after implantation, the hindlimb calf muscles were harvested for histological analysis. Osteoinduction was evaluated with use of a qualitative score and morphometric measurements of ossicle size, new bone formation, and residual demineralized bone matrix. RESULTS: Compared with platelet-poor plasma, platelet-rich plasma preparations exhibited a fourfold increase in the platelet count, a fifteenfold increase in the amount of transforming growth factor-beta, a sixfold increase in the amount of PDGF-BB, a fivefold increase in the amount of PDGF-AA, and a twofold increase in the amount of PDGF-AB. Demineralized bone matrix-1 was more osteoinductive than demineralized bone matrix-2, as determined on the basis of a greater ossicle area. The effect of platelet-rich plasma was either neutral or inhibitory depending on the demineralized bone matrix batch. When used with demineralized bone matrix-1, platelet-rich plasma did not alter the qualitative score or overall ossicle size, but it decreased the new bone area. When used with demineralized bone matrix-2, platelet-rich plasma reduced the qualitative score, ossicle area, and new bone area and increased the amount of residual demineralized bone matrix. The effects on osteoinduction also varied with the donor of the platelet-rich plasma. CONCLUSIONS: Platelet-rich plasma decreased the osteoinductivity of demineralized bone matrix implanted in immunocom-promised mice, and the activities of both demineralized bone matrix and platelet-rich plasma were donor-dependent.

M3 - SCORING: Zeitschriftenaufsatz

VL - 89

SP - 139

EP - 147

JO - J BONE JOINT SURG AM

JF - J BONE JOINT SURG AM

SN - 0021-9355

IS - 1

M1 - 1

ER -