Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice.

Standard

Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice. / Ranly, Don M; McMillan, Jacquelyn; Keller, Todd; Lohmann, Christoph; Meunch, Timothy; Cochran, David L; Schwartz, Zvi; Boyan, Barbara D.

in: J BONE JOINT SURG AM, Jahrgang 87, Nr. 9, 9, 2005, S. 2052-2064.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{f862f8d7d202402b91477ea2fe04af35,
title = "Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice.",
abstract = "BACKGROUND: Platelet-derived growth factor (PDGF) has been proposed as a therapeutic agent to promote bone-healing. The purpose of this study was to examine the effect of PDGF on the ability of human demineralized bone matrix to induce bone formation in a nude-mouse muscle-implantation model. We also examined whether platelet-rich plasma, which contains PDGF, also modulates osteoinduction in this model. METHODS: Human demineralized bone matrix, previously shown to be osteoinductive in the calf muscles of nude mice, was mixed with PDGF-BB (0, 0.1, 1, and 10 microg/10 mg of demineralized bone matrix) and was implanted bilaterally in the calf muscles of immunocompromised (nu/nu) mice (six mice in each group). Heat-inactivated demineralized bone matrix was used as a control. Tissue was harvested at fourteen, twenty-eight, and fifty-six days after implantation. Platelet-rich plasma was prepared from the blood of a healthy donor with use of the Harvest PRP preparation device, activated with thrombin, and mixed with active and inactive demineralized bone matrix. Fifty-six days post-implantation, tissues were harvested. Osteoinduction was assessed with use of a qualitative scoring system and with quantitative histomorphometry. RESULTS: Cartilage was present at fourteen days in all tissues that had received an implant, but the amount decreased as the PDGF concentration increased. PDGF reduced bone formation at twenty-eight days in a dose-dependent manner. This inhibitory effect was resolved by fifty-six days, except in tissues in which demineralized bone matrix and 10 microg of PDGF had been implanted. In sites treated with 10 microg of PDGF, the area of new bone was decreased and the area of bone marrow was reduced at twenty-eight and fifty-six days. PDGF also appeared to retard resorption of demineralized bone matrix in a dose-dependent manner. Platelet-rich plasma reduced osteoinduction by human demineralized bone matrix that had high osteoinductive activity and had no effect on osteoinduction by demineralized bone matrix with low activity. CONCLUSIONS: PDGF inhibits, in a dose-dependent manner, intramuscular osteoinduction and chondrogenesis by demineralized bone matrix in immunocompromised mice. Platelet-rich plasma also reduces the osteoinductivity of active demineralized bone matrix.",
author = "Ranly, {Don M} and Jacquelyn McMillan and Todd Keller and Christoph Lohmann and Timothy Meunch and Cochran, {David L} and Zvi Schwartz and Boyan, {Barbara D}",
year = "2005",
language = "Deutsch",
volume = "87",
pages = "2052--2064",
journal = "J BONE JOINT SURG AM",
issn = "0021-9355",
publisher = "Journal of Bone and Joint Surgery Inc.",
number = "9",

}

RIS

TY - JOUR

T1 - Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice.

AU - Ranly, Don M

AU - McMillan, Jacquelyn

AU - Keller, Todd

AU - Lohmann, Christoph

AU - Meunch, Timothy

AU - Cochran, David L

AU - Schwartz, Zvi

AU - Boyan, Barbara D

PY - 2005

Y1 - 2005

N2 - BACKGROUND: Platelet-derived growth factor (PDGF) has been proposed as a therapeutic agent to promote bone-healing. The purpose of this study was to examine the effect of PDGF on the ability of human demineralized bone matrix to induce bone formation in a nude-mouse muscle-implantation model. We also examined whether platelet-rich plasma, which contains PDGF, also modulates osteoinduction in this model. METHODS: Human demineralized bone matrix, previously shown to be osteoinductive in the calf muscles of nude mice, was mixed with PDGF-BB (0, 0.1, 1, and 10 microg/10 mg of demineralized bone matrix) and was implanted bilaterally in the calf muscles of immunocompromised (nu/nu) mice (six mice in each group). Heat-inactivated demineralized bone matrix was used as a control. Tissue was harvested at fourteen, twenty-eight, and fifty-six days after implantation. Platelet-rich plasma was prepared from the blood of a healthy donor with use of the Harvest PRP preparation device, activated with thrombin, and mixed with active and inactive demineralized bone matrix. Fifty-six days post-implantation, tissues were harvested. Osteoinduction was assessed with use of a qualitative scoring system and with quantitative histomorphometry. RESULTS: Cartilage was present at fourteen days in all tissues that had received an implant, but the amount decreased as the PDGF concentration increased. PDGF reduced bone formation at twenty-eight days in a dose-dependent manner. This inhibitory effect was resolved by fifty-six days, except in tissues in which demineralized bone matrix and 10 microg of PDGF had been implanted. In sites treated with 10 microg of PDGF, the area of new bone was decreased and the area of bone marrow was reduced at twenty-eight and fifty-six days. PDGF also appeared to retard resorption of demineralized bone matrix in a dose-dependent manner. Platelet-rich plasma reduced osteoinduction by human demineralized bone matrix that had high osteoinductive activity and had no effect on osteoinduction by demineralized bone matrix with low activity. CONCLUSIONS: PDGF inhibits, in a dose-dependent manner, intramuscular osteoinduction and chondrogenesis by demineralized bone matrix in immunocompromised mice. Platelet-rich plasma also reduces the osteoinductivity of active demineralized bone matrix.

AB - BACKGROUND: Platelet-derived growth factor (PDGF) has been proposed as a therapeutic agent to promote bone-healing. The purpose of this study was to examine the effect of PDGF on the ability of human demineralized bone matrix to induce bone formation in a nude-mouse muscle-implantation model. We also examined whether platelet-rich plasma, which contains PDGF, also modulates osteoinduction in this model. METHODS: Human demineralized bone matrix, previously shown to be osteoinductive in the calf muscles of nude mice, was mixed with PDGF-BB (0, 0.1, 1, and 10 microg/10 mg of demineralized bone matrix) and was implanted bilaterally in the calf muscles of immunocompromised (nu/nu) mice (six mice in each group). Heat-inactivated demineralized bone matrix was used as a control. Tissue was harvested at fourteen, twenty-eight, and fifty-six days after implantation. Platelet-rich plasma was prepared from the blood of a healthy donor with use of the Harvest PRP preparation device, activated with thrombin, and mixed with active and inactive demineralized bone matrix. Fifty-six days post-implantation, tissues were harvested. Osteoinduction was assessed with use of a qualitative scoring system and with quantitative histomorphometry. RESULTS: Cartilage was present at fourteen days in all tissues that had received an implant, but the amount decreased as the PDGF concentration increased. PDGF reduced bone formation at twenty-eight days in a dose-dependent manner. This inhibitory effect was resolved by fifty-six days, except in tissues in which demineralized bone matrix and 10 microg of PDGF had been implanted. In sites treated with 10 microg of PDGF, the area of new bone was decreased and the area of bone marrow was reduced at twenty-eight and fifty-six days. PDGF also appeared to retard resorption of demineralized bone matrix in a dose-dependent manner. Platelet-rich plasma reduced osteoinduction by human demineralized bone matrix that had high osteoinductive activity and had no effect on osteoinduction by demineralized bone matrix with low activity. CONCLUSIONS: PDGF inhibits, in a dose-dependent manner, intramuscular osteoinduction and chondrogenesis by demineralized bone matrix in immunocompromised mice. Platelet-rich plasma also reduces the osteoinductivity of active demineralized bone matrix.

M3 - SCORING: Zeitschriftenaufsatz

VL - 87

SP - 2052

EP - 2064

JO - J BONE JOINT SURG AM

JF - J BONE JOINT SURG AM

SN - 0021-9355

IS - 9

M1 - 9

ER -