Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism.

Standard

Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. / Schwedhelm, Edzard; Maas, Renke; Freese, Ralf; Jung, Donald; Lukacs, Zoltan; Jambrecina, Alen; Spickler, William; Schulze, Friedrich; Böger, Rainer.

in: BRIT J CLIN PHARMACO, Jahrgang 65, Nr. 1, 1, 2008, S. 51-59.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{fb055d9cb0a34c20876e7df0d0df0f7b,
title = "Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism.",
abstract = "AIMS: Oral L-arginine supplementation has been used in several studies to improve endothelium-dependent, nitric oxide (NO)-mediated vasodilation. L-Arginine treatment is hampered by extensive presystemic elimination due to intestinal arginase activity. In contrast, L-citrulline is readily absorbed and at least in part converted to L-arginine. The aim of our study was to assess this metabolic conversion and its subsequent pharmacodynamic effects. METHODS: In a double-blind, randomized, placebo-controlled cross-over study, 20 healthy volunteers received six different dosing regimes of placebo, citrulline, and arginine. Pharmacokinetic parameters (C(max), T(max), C(min), AUC) were calculated after 1 week of oral supplementation. The ratio of plasma L-arginine over asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase (arginine/ADMA ratio), urinary cyclic guanosine monophosphate (cGMP) and nitrate excretion rates, and flow-mediated vasodilation (FMD) was measured to assess pharmacodynamic effects. RESULTS: L-Citrulline dose-dependently increased AUC and C(max) of plasma L-arginine concentration more effectively than L-arginine (P <0.01). The highest dose of citrulline (3 g bid) increased the C(min) of plasma L-arginine and improved the L-arginine/ADMA ratio from 186 +/- 8 (baseline) to 278 +/- 14 [P <0.01, 95% confidence interval (CI) 66, 121]. Moreover, urinary nitrate and cGMP were increased from 92 +/- 10 to 125 +/- 15 micromol mmol(-1) creatinine (P = 0.01, 95% CI 8, 58) and from 38 +/- 3.3 to 50 +/- 6.7 nmol mmol(-1) creatinine (P = 0.04, 95% CI 0.4, 24), respectively. No treatment improved FMD over baseline. However, pooled analysis of all FMD data revealed a correlation between the increase of arginine/ADMA ratio and improvement of FMD. CONCLUSION: Our data show for the first time that oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling in a dose-dependent manner.",
author = "Edzard Schwedhelm and Renke Maas and Ralf Freese and Donald Jung and Zoltan Lukacs and Alen Jambrecina and William Spickler and Friedrich Schulze and Rainer B{\"o}ger",
year = "2008",
language = "Deutsch",
volume = "65",
pages = "51--59",
journal = "BRIT J CLIN PHARMACO",
issn = "0306-5251",
publisher = "Wiley-Blackwell",
number = "1",

}

RIS

TY - JOUR

T1 - Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism.

AU - Schwedhelm, Edzard

AU - Maas, Renke

AU - Freese, Ralf

AU - Jung, Donald

AU - Lukacs, Zoltan

AU - Jambrecina, Alen

AU - Spickler, William

AU - Schulze, Friedrich

AU - Böger, Rainer

PY - 2008

Y1 - 2008

N2 - AIMS: Oral L-arginine supplementation has been used in several studies to improve endothelium-dependent, nitric oxide (NO)-mediated vasodilation. L-Arginine treatment is hampered by extensive presystemic elimination due to intestinal arginase activity. In contrast, L-citrulline is readily absorbed and at least in part converted to L-arginine. The aim of our study was to assess this metabolic conversion and its subsequent pharmacodynamic effects. METHODS: In a double-blind, randomized, placebo-controlled cross-over study, 20 healthy volunteers received six different dosing regimes of placebo, citrulline, and arginine. Pharmacokinetic parameters (C(max), T(max), C(min), AUC) were calculated after 1 week of oral supplementation. The ratio of plasma L-arginine over asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase (arginine/ADMA ratio), urinary cyclic guanosine monophosphate (cGMP) and nitrate excretion rates, and flow-mediated vasodilation (FMD) was measured to assess pharmacodynamic effects. RESULTS: L-Citrulline dose-dependently increased AUC and C(max) of plasma L-arginine concentration more effectively than L-arginine (P <0.01). The highest dose of citrulline (3 g bid) increased the C(min) of plasma L-arginine and improved the L-arginine/ADMA ratio from 186 +/- 8 (baseline) to 278 +/- 14 [P <0.01, 95% confidence interval (CI) 66, 121]. Moreover, urinary nitrate and cGMP were increased from 92 +/- 10 to 125 +/- 15 micromol mmol(-1) creatinine (P = 0.01, 95% CI 8, 58) and from 38 +/- 3.3 to 50 +/- 6.7 nmol mmol(-1) creatinine (P = 0.04, 95% CI 0.4, 24), respectively. No treatment improved FMD over baseline. However, pooled analysis of all FMD data revealed a correlation between the increase of arginine/ADMA ratio and improvement of FMD. CONCLUSION: Our data show for the first time that oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling in a dose-dependent manner.

AB - AIMS: Oral L-arginine supplementation has been used in several studies to improve endothelium-dependent, nitric oxide (NO)-mediated vasodilation. L-Arginine treatment is hampered by extensive presystemic elimination due to intestinal arginase activity. In contrast, L-citrulline is readily absorbed and at least in part converted to L-arginine. The aim of our study was to assess this metabolic conversion and its subsequent pharmacodynamic effects. METHODS: In a double-blind, randomized, placebo-controlled cross-over study, 20 healthy volunteers received six different dosing regimes of placebo, citrulline, and arginine. Pharmacokinetic parameters (C(max), T(max), C(min), AUC) were calculated after 1 week of oral supplementation. The ratio of plasma L-arginine over asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase (arginine/ADMA ratio), urinary cyclic guanosine monophosphate (cGMP) and nitrate excretion rates, and flow-mediated vasodilation (FMD) was measured to assess pharmacodynamic effects. RESULTS: L-Citrulline dose-dependently increased AUC and C(max) of plasma L-arginine concentration more effectively than L-arginine (P <0.01). The highest dose of citrulline (3 g bid) increased the C(min) of plasma L-arginine and improved the L-arginine/ADMA ratio from 186 +/- 8 (baseline) to 278 +/- 14 [P <0.01, 95% confidence interval (CI) 66, 121]. Moreover, urinary nitrate and cGMP were increased from 92 +/- 10 to 125 +/- 15 micromol mmol(-1) creatinine (P = 0.01, 95% CI 8, 58) and from 38 +/- 3.3 to 50 +/- 6.7 nmol mmol(-1) creatinine (P = 0.04, 95% CI 0.4, 24), respectively. No treatment improved FMD over baseline. However, pooled analysis of all FMD data revealed a correlation between the increase of arginine/ADMA ratio and improvement of FMD. CONCLUSION: Our data show for the first time that oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling in a dose-dependent manner.

M3 - SCORING: Zeitschriftenaufsatz

VL - 65

SP - 51

EP - 59

JO - BRIT J CLIN PHARMACO

JF - BRIT J CLIN PHARMACO

SN - 0306-5251

IS - 1

M1 - 1

ER -