One hour electrical stimulation accelerates functional recovery after femoral nerve repair.

  • Peter Ahlborn
  • Melitta Schachner
  • Andrey Irintchev

Abstract

The clinical outcome of peripheral nerve injuries requiring surgical repair is usually poor and efficient therapies do not exist. Recent work has suggested that low-frequency electrical stimulation of the severed nerve which produces repeated discharges of the parent motoneuron perikarya positively influences axonal regeneration, even if applied once for a period of only 1 h. Here we provide the first evidence for locomotor functional benefits of such stimulation. We transected the femoral nerve of adult C57BL/6J mice proximal to the bifurcation of the quadriceps and saphenous branches and electrically stimulated the proximal nerve stump for 1 h at 20-Hz frequency prior to nerve repair with a silicone cuff. Three months later, the ability of the quadriceps muscle to extend the knee in sham-stimulated mice had recovered to 63% of the preoperative values as estimated by single-frame motion analysis. After electrical stimulation, the outcome was only slightly better (73%) but the rate of functional recovery was considerably accelerated. Near-maximum recovery was achieved 6 weeks earlier than in the control group. The beneficial effects were associated with larger motoneuron cell bodies and increased diameters of regenerated axons in the quadriceps nerve branch, but not with enhanced preferential reinnervation by motoneurons of muscle as opposed to skin. The observed acceleration of functional restoration and the positive effects on motoneurons and regenerated axons indicate the potential of a clinically feasible approach for improvement of nerve repair outcome in human patients in which delayed target reinnervation is a factor limiting recovery.

Bibliografische Daten

OriginalspracheDeutsch
Aufsatznummer1
ISSN0014-4886
StatusVeröffentlicht - 2007
pubmed 17919580