Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays.

Standard

Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. / Guse, A H; Goldwich, A; Weber, K; Mayr, Georg W.

in: J Chromatogr B Biomed Appl, Jahrgang 672, Nr. 2, 2, 1995, S. 189-198.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{1b234d8669c24e7795e0f6f13d6865ff,
title = "Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays.",
abstract = "A microbore high-performance liquid chromatographic (HPLC) method is presented allowing rapid and sensitive mass analysis of inositol phosphates from cells and tissues. An analysis starting from inorganic phosphate up to inositol hexakisphosphate displaying a similar isomer selectivity as compared to the standard metal-dye detection system takes about 15 min. The detection sensitivity was about 15 pmol for inositol trisphosphate, about 10 pmol for inositol tetrakisphosphate, about 5 pmol for inositol pentakisphosphate and less than 5 pmol for inositol hexakisphosphate. The method was validated regarding day-to-day variations and variations at the same day of retention times and peak areas of standard inositol phosphates. Standard deviations of retention times ranged from 0.25 to 0.62% (same day) and from 0.64 to 1.61% (day-to-day variations). Ranges of standard deviations of peak areas were between 2.24% and 3.91% (same day) and 6.13% and 13.8% (day-to-day variations). Linearity of the post-column complexometric metal-dye detection system was demonstrated in the range of a few picomoles and at least 800 pmol. The method was applied to the analysis of inositol phosphates in Jurkat T-lymphocytes and assays from minute amounts of enzymes interconverting inositol phosphates. While measurements of inositol phosphates from cell extracts are now possible using significantly reduced cell numbers, micro-enzyme assays are feasible in reasonable repeated analysis times and with sufficient isomer selectivity. In conclusion, a substantial improvement towards speed of analysis and detection sensitivity of inositol phosphate mass analysis was achieved by microbore metal-dye detection HPLC.",
author = "Guse, {A H} and A Goldwich and K Weber and Mayr, {Georg W.}",
year = "1995",
language = "Deutsch",
volume = "672",
pages = "189--198",
number = "2",

}

RIS

TY - JOUR

T1 - Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays.

AU - Guse, A H

AU - Goldwich, A

AU - Weber, K

AU - Mayr, Georg W.

PY - 1995

Y1 - 1995

N2 - A microbore high-performance liquid chromatographic (HPLC) method is presented allowing rapid and sensitive mass analysis of inositol phosphates from cells and tissues. An analysis starting from inorganic phosphate up to inositol hexakisphosphate displaying a similar isomer selectivity as compared to the standard metal-dye detection system takes about 15 min. The detection sensitivity was about 15 pmol for inositol trisphosphate, about 10 pmol for inositol tetrakisphosphate, about 5 pmol for inositol pentakisphosphate and less than 5 pmol for inositol hexakisphosphate. The method was validated regarding day-to-day variations and variations at the same day of retention times and peak areas of standard inositol phosphates. Standard deviations of retention times ranged from 0.25 to 0.62% (same day) and from 0.64 to 1.61% (day-to-day variations). Ranges of standard deviations of peak areas were between 2.24% and 3.91% (same day) and 6.13% and 13.8% (day-to-day variations). Linearity of the post-column complexometric metal-dye detection system was demonstrated in the range of a few picomoles and at least 800 pmol. The method was applied to the analysis of inositol phosphates in Jurkat T-lymphocytes and assays from minute amounts of enzymes interconverting inositol phosphates. While measurements of inositol phosphates from cell extracts are now possible using significantly reduced cell numbers, micro-enzyme assays are feasible in reasonable repeated analysis times and with sufficient isomer selectivity. In conclusion, a substantial improvement towards speed of analysis and detection sensitivity of inositol phosphate mass analysis was achieved by microbore metal-dye detection HPLC.

AB - A microbore high-performance liquid chromatographic (HPLC) method is presented allowing rapid and sensitive mass analysis of inositol phosphates from cells and tissues. An analysis starting from inorganic phosphate up to inositol hexakisphosphate displaying a similar isomer selectivity as compared to the standard metal-dye detection system takes about 15 min. The detection sensitivity was about 15 pmol for inositol trisphosphate, about 10 pmol for inositol tetrakisphosphate, about 5 pmol for inositol pentakisphosphate and less than 5 pmol for inositol hexakisphosphate. The method was validated regarding day-to-day variations and variations at the same day of retention times and peak areas of standard inositol phosphates. Standard deviations of retention times ranged from 0.25 to 0.62% (same day) and from 0.64 to 1.61% (day-to-day variations). Ranges of standard deviations of peak areas were between 2.24% and 3.91% (same day) and 6.13% and 13.8% (day-to-day variations). Linearity of the post-column complexometric metal-dye detection system was demonstrated in the range of a few picomoles and at least 800 pmol. The method was applied to the analysis of inositol phosphates in Jurkat T-lymphocytes and assays from minute amounts of enzymes interconverting inositol phosphates. While measurements of inositol phosphates from cell extracts are now possible using significantly reduced cell numbers, micro-enzyme assays are feasible in reasonable repeated analysis times and with sufficient isomer selectivity. In conclusion, a substantial improvement towards speed of analysis and detection sensitivity of inositol phosphate mass analysis was achieved by microbore metal-dye detection HPLC.

M3 - SCORING: Zeitschriftenaufsatz

VL - 672

SP - 189

EP - 198

IS - 2

M1 - 2

ER -