Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?

Standard

Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? / Hummel, Friedhelm; Cohen, Leonardo G.

in: LANCET NEUROL, Jahrgang 5, Nr. 8, 8, 2006, S. 708-712.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{509c0a00bff7423f885904c1e565d236,
title = "Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?",
abstract = "BACKGROUND: Motor impairment resulting from chronic stroke can have extensive physical, psychological, financial, and social implications despite available neurorehabilitative treatments. Recent studies in animals showed that direct epidural stimulation of the primary motor cortex surrounding a small infarct in the lesioned hemisphere (M1(lesioned hemisphere)) elicits improvements in motor function. RECENT DEVELOPMENTS: In human beings, proof of principle studies from different laboratories showed that non-invasive transcranial magnetic stimulation and direct current stimulation that upregulate excitability within M1(lesioned hemisphere) or downregulate excitability in the intact hemisphere (M1(intact hemisphere)) results in improvement in motor function in patients with stroke. Possible mechanisms mediating these effects can include the correction of abnormally persistent interhemispheric inhibitory drive from M1(intact hemisphere) to M1(lesioned hemisphere) in the process of generation of voluntary movements by the paretic hand, a disorder correlated with the magnitude of impairment. In this paper we review these mechanistically oriented interventional approaches. WHAT NEXT?: These findings suggest that transcranial magnetic stimulation and transcranial direct current stimulation could develop into useful adjuvant strategies in neurorehabilitation but have to be further assessed in multicentre clinical trials.",
author = "Friedhelm Hummel and Cohen, {Leonardo G}",
year = "2006",
language = "Deutsch",
volume = "5",
pages = "708--712",
journal = "LANCET NEUROL",
issn = "1474-4422",
publisher = "Lancet Publishing Group",
number = "8",

}

RIS

TY - JOUR

T1 - Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?

AU - Hummel, Friedhelm

AU - Cohen, Leonardo G

PY - 2006

Y1 - 2006

N2 - BACKGROUND: Motor impairment resulting from chronic stroke can have extensive physical, psychological, financial, and social implications despite available neurorehabilitative treatments. Recent studies in animals showed that direct epidural stimulation of the primary motor cortex surrounding a small infarct in the lesioned hemisphere (M1(lesioned hemisphere)) elicits improvements in motor function. RECENT DEVELOPMENTS: In human beings, proof of principle studies from different laboratories showed that non-invasive transcranial magnetic stimulation and direct current stimulation that upregulate excitability within M1(lesioned hemisphere) or downregulate excitability in the intact hemisphere (M1(intact hemisphere)) results in improvement in motor function in patients with stroke. Possible mechanisms mediating these effects can include the correction of abnormally persistent interhemispheric inhibitory drive from M1(intact hemisphere) to M1(lesioned hemisphere) in the process of generation of voluntary movements by the paretic hand, a disorder correlated with the magnitude of impairment. In this paper we review these mechanistically oriented interventional approaches. WHAT NEXT?: These findings suggest that transcranial magnetic stimulation and transcranial direct current stimulation could develop into useful adjuvant strategies in neurorehabilitation but have to be further assessed in multicentre clinical trials.

AB - BACKGROUND: Motor impairment resulting from chronic stroke can have extensive physical, psychological, financial, and social implications despite available neurorehabilitative treatments. Recent studies in animals showed that direct epidural stimulation of the primary motor cortex surrounding a small infarct in the lesioned hemisphere (M1(lesioned hemisphere)) elicits improvements in motor function. RECENT DEVELOPMENTS: In human beings, proof of principle studies from different laboratories showed that non-invasive transcranial magnetic stimulation and direct current stimulation that upregulate excitability within M1(lesioned hemisphere) or downregulate excitability in the intact hemisphere (M1(intact hemisphere)) results in improvement in motor function in patients with stroke. Possible mechanisms mediating these effects can include the correction of abnormally persistent interhemispheric inhibitory drive from M1(intact hemisphere) to M1(lesioned hemisphere) in the process of generation of voluntary movements by the paretic hand, a disorder correlated with the magnitude of impairment. In this paper we review these mechanistically oriented interventional approaches. WHAT NEXT?: These findings suggest that transcranial magnetic stimulation and transcranial direct current stimulation could develop into useful adjuvant strategies in neurorehabilitation but have to be further assessed in multicentre clinical trials.

M3 - SCORING: Zeitschriftenaufsatz

VL - 5

SP - 708

EP - 712

JO - LANCET NEUROL

JF - LANCET NEUROL

SN - 1474-4422

IS - 8

M1 - 8

ER -