Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice
Beteiligte Einrichtungen
Abstract
OBJECTIVE: Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aβ) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation.
METHODS: IFN-β knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling.
RESULTS: Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-β loss. Independently of α-syn expression, lack of IFN-β alone induced Aβ plaques, pTau tangles, and LB-like Aβ+ /pTau+ inclusion bodies and neuroinflammation. IFN-β loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-β signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aβ and pTau accumulation.
INTERPRETATION: These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-β/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.
Bibliografische Daten
Originalsprache | Englisch |
---|---|
ISSN | 0364-5134 |
DOIs | |
Status | Veröffentlicht - 11.2021 |
Anmerkungen des Dekanats
© 2021 American Neurological Association.
PubMed | 34476836 |
---|