NAADP mobilizes calcium from the endoplasmic reticular Ca(2+) store in T-lymphocytes.

Standard

NAADP mobilizes calcium from the endoplasmic reticular Ca(2+) store in T-lymphocytes. / Steen, Mareike; Kirchberger, Tanja; Guse, Andreas H.

in: J BIOL CHEM, Jahrgang 282, Nr. 26, 26, 2007, S. 18864-18871.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{11e933a5fe7d43689adc3889799bb97f,
title = "NAADP mobilizes calcium from the endoplasmic reticular Ca(2+) store in T-lymphocytes.",
abstract = "The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum.",
author = "Mareike Steen and Tanja Kirchberger and Guse, {Andreas H.}",
year = "2007",
language = "Deutsch",
volume = "282",
pages = "18864--18871",
journal = "J BIOL CHEM",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "26",

}

RIS

TY - JOUR

T1 - NAADP mobilizes calcium from the endoplasmic reticular Ca(2+) store in T-lymphocytes.

AU - Steen, Mareike

AU - Kirchberger, Tanja

AU - Guse, Andreas H.

PY - 2007

Y1 - 2007

N2 - The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum.

AB - The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum.

M3 - SCORING: Zeitschriftenaufsatz

VL - 282

SP - 18864

EP - 18871

JO - J BIOL CHEM

JF - J BIOL CHEM

SN - 0021-9258

IS - 26

M1 - 26

ER -