Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro

Standard

Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro. / Klusch, Andreas; Gorzelanny, Christian; Reeh, Peter W; Schmelz, Martin; Petersen, Marlen; Sauer, Susanne K.

in: PLOS ONE, Jahrgang 13, Nr. 9, 2018, S. e0203215.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{248afd35c0da4560b7222114b3ef783b,
title = "Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro",
abstract = "Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.",
keywords = "Journal Article",
author = "Andreas Klusch and Christian Gorzelanny and Reeh, {Peter W} and Martin Schmelz and Marlen Petersen and Sauer, {Susanne K}",
year = "2018",
doi = "10.1371/journal.pone.0203215",
language = "English",
volume = "13",
pages = "e0203215",
journal = "PLOS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "9",

}

RIS

TY - JOUR

T1 - Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro

AU - Klusch, Andreas

AU - Gorzelanny, Christian

AU - Reeh, Peter W

AU - Schmelz, Martin

AU - Petersen, Marlen

AU - Sauer, Susanne K

PY - 2018

Y1 - 2018

N2 - Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.

AB - Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.

KW - Journal Article

U2 - 10.1371/journal.pone.0203215

DO - 10.1371/journal.pone.0203215

M3 - SCORING: Journal article

C2 - 30260982

VL - 13

SP - e0203215

JO - PLOS ONE

JF - PLOS ONE

SN - 1932-6203

IS - 9

ER -