K-Ras(V12) differentially affects the three Akt isoforms in lung and pancreatic carcinoma cells and upregulates E-cadherin and NCAM via Akt3

  • Rebekka Geißert
  • Angela Lammert
  • Stefanie Wirth
  • Rabea Hönig
  • Dirk Lohfink
  • Monika Unger
  • Denis Pek
  • Konstantin Schlüter
  • Theresa Scheftschik
  • Daniel J. Smit
  • Manfred Jücker
  • Andre Menke
  • Klaudia Giehl

Abstract

K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.

Bibliografische Daten

OriginalspracheEnglisch
ISSN1478-811X
DOIs
StatusVeröffentlicht - 30.01.2024