Knockdown of hepatic ABCA1 by RNA interference decreases plasma HDL cholesterol levels and influences postprandial lipemia in mice.

  • Sergei Ragozin
  • Andreas Niemeier
  • Alexander Laatsch
  • Britta Loeffler
  • Martin Merkel
  • Ulrike Beisiegel
  • Joerg Heeren

Abstract

OBJECTIVE: To investigate the impact of hepatic ABCA1 on systemic lipoprotein metabolism in vivo by an adenovirus-mediated RNA interference approach. METHODS AND RESULTS: Efficiency of plasmid-based small interference RNA (siRNA)-induced knockdown of cotransfected murine ATP binding cassette transporter A1 (mABCA1) in HEK-293 cells was judged by RT-polymerase chain reaction, immunofluorescence, and Western blot analysis. The most effective plasmid was used to generate a recombinant adenovirus as a tool to selectively downregulate ABCA1 expression in mouse liver (C57BL/6). In comparison to controls, Western blot analysis from liver membrane proteins of Ad-anti-ABCA1 infected mice resulted in an approximately 50% reduction of endogenous ABCA1 and a clear upregulation of apolipoprotein E. Fast protein liquid chromatography analysis of plasma revealed that hepatic ABCA1 protein reduction was associated with an approximately 40% decrease of HDL cholesterol and a reduction of HDL-associated apolipoprotein A-I and E. In the fasted state, other lipoprotein classes were not affected. To analyze the influence of ABCA1 downregulation on postprandial lipemia, infected mice were given a gastric load of radiolabeled trioleate in olive oil. In Ad-anti-ABCA1 infected mice, the postprandial increase of chylomicrons and chylomicron-associated apolipoproteins B and E was significantly reduced as compared with controls. CONCLUSIONS: Hepatic ABCA1 contributes to HDL plasma levels and influences postprandial lipemia.

Bibliografische Daten

OriginalspracheDeutsch
Aufsatznummer7
ISSN1079-5642
StatusVeröffentlicht - 2005
pubmed 15845910