Iterative Model Reconstruction (IMR) in MDCT Below 2 mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4)

Standard

Iterative Model Reconstruction (IMR) in MDCT Below 2 mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4). / Schmidt-Holtz, Jakob; Laqmani, Azien; Butscheidt, Sebastian; Kurfürst, Max; Avanesov, Maxim; Behzadi, Cyrus; Spink, Clemens; Veldhoen, Simon; Nagel, Hans Dieter; Adam, Gerhard; Regier, Marc.

in: ROFO-FORTSCHR RONTG, Jahrgang 190, Nr. 7, 02.07.2018, S. 630-636.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{dae598002a9d48ed97f393b5f0b1978a,
title = "Iterative Model Reconstruction (IMR) in MDCT Below 2 mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4)",
abstract = "PURPOSE: The purpose of the study was to assess the impact of iterative model reconstruction (IMR) on reader confidence with respect to stone detection and image quality in comparison to filtered back-projection (FBP) and iDose level 4 (iDose4) in abdominal MDCT with radiation doses below 2 mSv.MATERIALS AND METHODS: For 32 consecutive patients with suspected ureteral stone disease, the raw data of unenhanced 256 slice MDCT (120 kV, 40 reference mAs, mean CTDIvol: 2.7 ± 0.8 mGy, mean DLP: 126 ± 38 mGy × cm) were reconstructed using a prototype version of IMR (levels 1 - 3), iDose4 (level 4) and FBP at a 3 mm slice thickness. Image analysis was independently performed by two radiologists in a blinded fashion. The reader confidence level with respect to stone detection was recorded based on a 5-point scale (1 - certain exclusion; 5 - concrement definitely present) as well as for the evaluation of image quality regarding the depiction of anatomical details (1 - poor; 5 - excellent). A clinical reference standard for stone detection was not established. Statistical evaluation included weighted kappa analysis and Wilcoxon test.RESULTS: 17 pelvic and ureteral stones were found. 11 further concrements were located within the ostium of the urinary bladder or the bladder itself. Applying IMR, a distinct improvement in image quality was observed at every level (mean value for FBP, 2.0; iDose4, 2.9; IMR L1, 4.2; IMR L2, 4.0; IMR L3, 3.9; all p < 0.001). Applying the higher IMR levels L2 and L3, a certain level of so-called {"}blotchiness{"} of anatomical contours was observed. Reader confidence was significantly improved and was independent of IMR level (certain stone detection FBP, 69 %; iDose4, 81 %; IMR L1 to L3, 95 %; all p > 0.001). With increasing IMR levels, the reduction in streak artifacts was quantified by a decrease in image noise. A loss of anatomical information was not observed. The sensitivity rates for stone detection were equivalent for all MDCTs reconstructed with FBP, iDose4 and IMR. A mean effective dose of 1.9 ± 0.6 mSv was calculated.CONCLUSION: In comparison to FBP and iDose4, a significant increase in mean image quality, reduction in image noise and improvement in subjective reader confidence can be achieved by applying IMR even at significantly reduced dose settings below 2 mSv. Results indicate that a further dose reduction might be possible with IMR.KEY POINTS: · Urinary tract. · urolithiasis. · iterative reconstruction.CITATION FORMAT: · Schmidt-Holtz J, Laqmani A, Butscheidt S et al. Iterative Model Reconstruction (IMR) in MDCT Below 2mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4). Fortschr R{\"o}ntgenstr 2018; 190: 630 - 636.",
keywords = "Adult, Aged, Aged, 80 and over, Artifacts, Female, Humans, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Male, Middle Aged, Multidetector Computed Tomography, Radiation Dosage, Radiographic Image Enhancement, Sensitivity and Specificity, Urinary Calculi, Young Adult, Journal Article",
author = "Jakob Schmidt-Holtz and Azien Laqmani and Sebastian Butscheidt and Max Kurf{\"u}rst and Maxim Avanesov and Cyrus Behzadi and Clemens Spink and Simon Veldhoen and Nagel, {Hans Dieter} and Gerhard Adam and Marc Regier",
note = "{\textcopyright} Georg Thieme Verlag KG Stuttgart · New York.",
year = "2018",
month = jul,
day = "2",
doi = "10.1055/s-0044-100724",
language = "English",
volume = "190",
pages = "630--636",
journal = "ROFO-FORTSCHR RONTG",
issn = "1438-9029",
publisher = "Georg Thieme Verlag KG",
number = "7",

}

RIS

TY - JOUR

T1 - Iterative Model Reconstruction (IMR) in MDCT Below 2 mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4)

AU - Schmidt-Holtz, Jakob

AU - Laqmani, Azien

AU - Butscheidt, Sebastian

AU - Kurfürst, Max

AU - Avanesov, Maxim

AU - Behzadi, Cyrus

AU - Spink, Clemens

AU - Veldhoen, Simon

AU - Nagel, Hans Dieter

AU - Adam, Gerhard

AU - Regier, Marc

N1 - © Georg Thieme Verlag KG Stuttgart · New York.

PY - 2018/7/2

Y1 - 2018/7/2

N2 - PURPOSE: The purpose of the study was to assess the impact of iterative model reconstruction (IMR) on reader confidence with respect to stone detection and image quality in comparison to filtered back-projection (FBP) and iDose level 4 (iDose4) in abdominal MDCT with radiation doses below 2 mSv.MATERIALS AND METHODS: For 32 consecutive patients with suspected ureteral stone disease, the raw data of unenhanced 256 slice MDCT (120 kV, 40 reference mAs, mean CTDIvol: 2.7 ± 0.8 mGy, mean DLP: 126 ± 38 mGy × cm) were reconstructed using a prototype version of IMR (levels 1 - 3), iDose4 (level 4) and FBP at a 3 mm slice thickness. Image analysis was independently performed by two radiologists in a blinded fashion. The reader confidence level with respect to stone detection was recorded based on a 5-point scale (1 - certain exclusion; 5 - concrement definitely present) as well as for the evaluation of image quality regarding the depiction of anatomical details (1 - poor; 5 - excellent). A clinical reference standard for stone detection was not established. Statistical evaluation included weighted kappa analysis and Wilcoxon test.RESULTS: 17 pelvic and ureteral stones were found. 11 further concrements were located within the ostium of the urinary bladder or the bladder itself. Applying IMR, a distinct improvement in image quality was observed at every level (mean value for FBP, 2.0; iDose4, 2.9; IMR L1, 4.2; IMR L2, 4.0; IMR L3, 3.9; all p < 0.001). Applying the higher IMR levels L2 and L3, a certain level of so-called "blotchiness" of anatomical contours was observed. Reader confidence was significantly improved and was independent of IMR level (certain stone detection FBP, 69 %; iDose4, 81 %; IMR L1 to L3, 95 %; all p > 0.001). With increasing IMR levels, the reduction in streak artifacts was quantified by a decrease in image noise. A loss of anatomical information was not observed. The sensitivity rates for stone detection were equivalent for all MDCTs reconstructed with FBP, iDose4 and IMR. A mean effective dose of 1.9 ± 0.6 mSv was calculated.CONCLUSION: In comparison to FBP and iDose4, a significant increase in mean image quality, reduction in image noise and improvement in subjective reader confidence can be achieved by applying IMR even at significantly reduced dose settings below 2 mSv. Results indicate that a further dose reduction might be possible with IMR.KEY POINTS: · Urinary tract. · urolithiasis. · iterative reconstruction.CITATION FORMAT: · Schmidt-Holtz J, Laqmani A, Butscheidt S et al. Iterative Model Reconstruction (IMR) in MDCT Below 2mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4). Fortschr Röntgenstr 2018; 190: 630 - 636.

AB - PURPOSE: The purpose of the study was to assess the impact of iterative model reconstruction (IMR) on reader confidence with respect to stone detection and image quality in comparison to filtered back-projection (FBP) and iDose level 4 (iDose4) in abdominal MDCT with radiation doses below 2 mSv.MATERIALS AND METHODS: For 32 consecutive patients with suspected ureteral stone disease, the raw data of unenhanced 256 slice MDCT (120 kV, 40 reference mAs, mean CTDIvol: 2.7 ± 0.8 mGy, mean DLP: 126 ± 38 mGy × cm) were reconstructed using a prototype version of IMR (levels 1 - 3), iDose4 (level 4) and FBP at a 3 mm slice thickness. Image analysis was independently performed by two radiologists in a blinded fashion. The reader confidence level with respect to stone detection was recorded based on a 5-point scale (1 - certain exclusion; 5 - concrement definitely present) as well as for the evaluation of image quality regarding the depiction of anatomical details (1 - poor; 5 - excellent). A clinical reference standard for stone detection was not established. Statistical evaluation included weighted kappa analysis and Wilcoxon test.RESULTS: 17 pelvic and ureteral stones were found. 11 further concrements were located within the ostium of the urinary bladder or the bladder itself. Applying IMR, a distinct improvement in image quality was observed at every level (mean value for FBP, 2.0; iDose4, 2.9; IMR L1, 4.2; IMR L2, 4.0; IMR L3, 3.9; all p < 0.001). Applying the higher IMR levels L2 and L3, a certain level of so-called "blotchiness" of anatomical contours was observed. Reader confidence was significantly improved and was independent of IMR level (certain stone detection FBP, 69 %; iDose4, 81 %; IMR L1 to L3, 95 %; all p > 0.001). With increasing IMR levels, the reduction in streak artifacts was quantified by a decrease in image noise. A loss of anatomical information was not observed. The sensitivity rates for stone detection were equivalent for all MDCTs reconstructed with FBP, iDose4 and IMR. A mean effective dose of 1.9 ± 0.6 mSv was calculated.CONCLUSION: In comparison to FBP and iDose4, a significant increase in mean image quality, reduction in image noise and improvement in subjective reader confidence can be achieved by applying IMR even at significantly reduced dose settings below 2 mSv. Results indicate that a further dose reduction might be possible with IMR.KEY POINTS: · Urinary tract. · urolithiasis. · iterative reconstruction.CITATION FORMAT: · Schmidt-Holtz J, Laqmani A, Butscheidt S et al. Iterative Model Reconstruction (IMR) in MDCT Below 2mSv for the Detection of Urinary Calculi: Diagnostic Accuracy and Image Quality in Comparison to Filtered Back-Projection and 4th Generation Iterative Reconstruction (iDose4). Fortschr Röntgenstr 2018; 190: 630 - 636.

KW - Adult

KW - Aged

KW - Aged, 80 and over

KW - Artifacts

KW - Female

KW - Humans

KW - Image Interpretation, Computer-Assisted

KW - Image Processing, Computer-Assisted

KW - Male

KW - Middle Aged

KW - Multidetector Computed Tomography

KW - Radiation Dosage

KW - Radiographic Image Enhancement

KW - Sensitivity and Specificity

KW - Urinary Calculi

KW - Young Adult

KW - Journal Article

U2 - 10.1055/s-0044-100724

DO - 10.1055/s-0044-100724

M3 - SCORING: Journal article

C2 - 29966156

VL - 190

SP - 630

EP - 636

JO - ROFO-FORTSCHR RONTG

JF - ROFO-FORTSCHR RONTG

SN - 1438-9029

IS - 7

ER -