Interaction of calmodulin with muscle phosphofructokinase. Changes of the aggregation state, conformation and catalytic activity of the enzyme.

Standard

Interaction of calmodulin with muscle phosphofructokinase. Changes of the aggregation state, conformation and catalytic activity of the enzyme. / Mayr, Georg W.

in: EUR J BIOCHEM, Jahrgang 143, Nr. 3, 3, 1984, S. 513-520.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{35b39e83e1e644a292155160eae9596f,
title = "Interaction of calmodulin with muscle phosphofructokinase. Changes of the aggregation state, conformation and catalytic activity of the enzyme.",
abstract = "Phosphofructokinase from muscle has been shown to be a calmodulin-binding protein [Mayr, G.W. and Heilmeyer, L.M.G., Jr (1983) FEBS Lett. 159, 51-57]. Details of the influence of calmodulin on the aggregation state, the conformation and the catalytic properties of phosphofructokinase have been studied by enzymatic and light-scattering analyses. Calmodulin acts as a Ca2+-dependent hysteretic inhibitor of the highly active enzyme. At least one mole of calmodulin binds to each protomer of the enzyme, induces a shift from the highly active tetrameric towards an inactive dimeric state and slowly changes the conformation of the dimers. Dissociation of calmodulin from conformationally changed dimers by removal of Ca2+ stops the inactivation. Without a significant regain of catalytic activity large polymers are rapidly formed. For a reactivation of the inactivated enzyme, calmodulin has to remain associated and the incubation conditions must be changed in a way to allow for a back isomerization and reassociation of dimers. The isomerization reaction is promoted by Mg . ATP, the reassociation reaction most effectively by fructose bisphosphate. A model for the calmodulin-phosphofructokinase interaction is proposed.",
author = "Mayr, {Georg W.}",
year = "1984",
language = "Deutsch",
volume = "143",
pages = "513--520",
number = "3",

}

RIS

TY - JOUR

T1 - Interaction of calmodulin with muscle phosphofructokinase. Changes of the aggregation state, conformation and catalytic activity of the enzyme.

AU - Mayr, Georg W.

PY - 1984

Y1 - 1984

N2 - Phosphofructokinase from muscle has been shown to be a calmodulin-binding protein [Mayr, G.W. and Heilmeyer, L.M.G., Jr (1983) FEBS Lett. 159, 51-57]. Details of the influence of calmodulin on the aggregation state, the conformation and the catalytic properties of phosphofructokinase have been studied by enzymatic and light-scattering analyses. Calmodulin acts as a Ca2+-dependent hysteretic inhibitor of the highly active enzyme. At least one mole of calmodulin binds to each protomer of the enzyme, induces a shift from the highly active tetrameric towards an inactive dimeric state and slowly changes the conformation of the dimers. Dissociation of calmodulin from conformationally changed dimers by removal of Ca2+ stops the inactivation. Without a significant regain of catalytic activity large polymers are rapidly formed. For a reactivation of the inactivated enzyme, calmodulin has to remain associated and the incubation conditions must be changed in a way to allow for a back isomerization and reassociation of dimers. The isomerization reaction is promoted by Mg . ATP, the reassociation reaction most effectively by fructose bisphosphate. A model for the calmodulin-phosphofructokinase interaction is proposed.

AB - Phosphofructokinase from muscle has been shown to be a calmodulin-binding protein [Mayr, G.W. and Heilmeyer, L.M.G., Jr (1983) FEBS Lett. 159, 51-57]. Details of the influence of calmodulin on the aggregation state, the conformation and the catalytic properties of phosphofructokinase have been studied by enzymatic and light-scattering analyses. Calmodulin acts as a Ca2+-dependent hysteretic inhibitor of the highly active enzyme. At least one mole of calmodulin binds to each protomer of the enzyme, induces a shift from the highly active tetrameric towards an inactive dimeric state and slowly changes the conformation of the dimers. Dissociation of calmodulin from conformationally changed dimers by removal of Ca2+ stops the inactivation. Without a significant regain of catalytic activity large polymers are rapidly formed. For a reactivation of the inactivated enzyme, calmodulin has to remain associated and the incubation conditions must be changed in a way to allow for a back isomerization and reassociation of dimers. The isomerization reaction is promoted by Mg . ATP, the reassociation reaction most effectively by fructose bisphosphate. A model for the calmodulin-phosphofructokinase interaction is proposed.

M3 - SCORING: Zeitschriftenaufsatz

VL - 143

SP - 513

EP - 520

IS - 3

M1 - 3

ER -