Integrator or coincidence detector?

Standard

Integrator or coincidence detector? The role of the cortical neuron revisited. / König, P; Engel, A K; Singer, W.

in: TRENDS NEUROSCI, Jahrgang 19, Nr. 4, 01.04.1996, S. 130-7.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{d19102c5093249cba76bc2327e217056,
title = "Integrator or coincidence detector?: The role of the cortical neuron revisited",
abstract = "Neurons can operate in two distinct ways, depending on the duration of the interval over which they effectively summate incoming synaptic potentials. If this interval is of the order of the mean interspike interval or longer, neurons act effectively as temporal integrators and transmit temporal patterns with only low reliability. If, by contrast, the integration interval is short compared to the interspike interval, neurons act essentially as coincidence detectors, relay preferentially synchronized input, and the temporal structure of their output is a direct function of the input pattern. Recently, interest in this distinction has been revived because experimental and theoretical results suggest that synchronous firing of neurons might play an important role for information processing in the cortex. Here, we argue that coincidence detection, rather than temporal integration, might be a prevalent operation mode of cortical neurons. We base our arguments on established biophysical properties of cortical neurons and on particular features of cortical dynamics.",
keywords = "Animals, Cats, Cerebral Cortex, Electrophysiology, Membrane Potentials, Neurons",
author = "P K{\"o}nig and Engel, {A K} and W Singer",
year = "1996",
month = apr,
day = "1",
language = "English",
volume = "19",
pages = "130--7",
journal = "TRENDS NEUROSCI",
issn = "0166-2236",
publisher = "Elsevier Limited",
number = "4",

}

RIS

TY - JOUR

T1 - Integrator or coincidence detector?

T2 - The role of the cortical neuron revisited

AU - König, P

AU - Engel, A K

AU - Singer, W

PY - 1996/4/1

Y1 - 1996/4/1

N2 - Neurons can operate in two distinct ways, depending on the duration of the interval over which they effectively summate incoming synaptic potentials. If this interval is of the order of the mean interspike interval or longer, neurons act effectively as temporal integrators and transmit temporal patterns with only low reliability. If, by contrast, the integration interval is short compared to the interspike interval, neurons act essentially as coincidence detectors, relay preferentially synchronized input, and the temporal structure of their output is a direct function of the input pattern. Recently, interest in this distinction has been revived because experimental and theoretical results suggest that synchronous firing of neurons might play an important role for information processing in the cortex. Here, we argue that coincidence detection, rather than temporal integration, might be a prevalent operation mode of cortical neurons. We base our arguments on established biophysical properties of cortical neurons and on particular features of cortical dynamics.

AB - Neurons can operate in two distinct ways, depending on the duration of the interval over which they effectively summate incoming synaptic potentials. If this interval is of the order of the mean interspike interval or longer, neurons act effectively as temporal integrators and transmit temporal patterns with only low reliability. If, by contrast, the integration interval is short compared to the interspike interval, neurons act essentially as coincidence detectors, relay preferentially synchronized input, and the temporal structure of their output is a direct function of the input pattern. Recently, interest in this distinction has been revived because experimental and theoretical results suggest that synchronous firing of neurons might play an important role for information processing in the cortex. Here, we argue that coincidence detection, rather than temporal integration, might be a prevalent operation mode of cortical neurons. We base our arguments on established biophysical properties of cortical neurons and on particular features of cortical dynamics.

KW - Animals

KW - Cats

KW - Cerebral Cortex

KW - Electrophysiology

KW - Membrane Potentials

KW - Neurons

M3 - SCORING: Journal article

C2 - 8658595

VL - 19

SP - 130

EP - 137

JO - TRENDS NEUROSCI

JF - TRENDS NEUROSCI

SN - 0166-2236

IS - 4

ER -