Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice.

Standard

Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice. / Kaiser, S; Schirmacher, P; Philipp, A; Protschka, M; Moll, Ingrid; Nicol, K; Blessing, M.

in: J INVEST DERMATOL, Jahrgang 111, Nr. 6, 6, 1998, S. 1145-1152.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{a6de02442f90478faadc38d0e36b95cb,
title = "Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice.",
abstract = "Growth factors of the transforming growth factor-beta superfamily are involved in cutaneous wound healing. In this study we analyze the expression of the bone morphogenetic protein-6 (BMP-6) gene, a transforming growth factor-beta related gene, in skin wounds. In normal mouse skin high levels of BMP-6 mRNA and protein are expressed by postmitotic keratinocytes of stratified epidermis until day 6 after birth. BMP-6 expression is strongly reduced in adult epidermis with diminished mitotic activity. After skin injury we found large induction of BMP-6-specific RNA and protein in keratinocytes at the wound edge and keratinocytes of the newly formed epithelium as well as in fibroblast shaped cells in the wound bed. BMP-6-specific RNA was induced within 24 h after injury, whereas significant upregulation of BMP-6 on the protein level was detected only 2-3 d after injury. Protein was confined to outermost suprabasal epidermal layers, whereas BMP-6-specific RNA was distributed throughout all epidermal layers including basal keratinocytes and the leading edge of the migrating keratinocytes. We also detected high levels of BMP-6-specific RNA and protein in chronic human wounds of different etiology. In contrast to the overall distribution pattern of BMP-6-specific RNA, the protein was not detected in keratinocytes directly bordering the wound. In order to test the influence of BMP-6 abundance on the progress of wound healing, we analyzed the wound response of transgenic mice overexpressing BMP-6 in the epidermis. In these mice, reepitheliazation of skin wounds was significantly delayed, suggesting that strict spatial and temporal regulation of BMP-6 expression is necessary not only for formation but also for reestablishment of a fully differentiated epidermis.",
author = "S Kaiser and P Schirmacher and A Philipp and M Protschka and Ingrid Moll and K Nicol and M Blessing",
year = "1998",
language = "Deutsch",
volume = "111",
pages = "1145--1152",
journal = "J INVEST DERMATOL",
issn = "0022-202X",
publisher = "NATURE PUBLISHING GROUP",
number = "6",

}

RIS

TY - JOUR

T1 - Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice.

AU - Kaiser, S

AU - Schirmacher, P

AU - Philipp, A

AU - Protschka, M

AU - Moll, Ingrid

AU - Nicol, K

AU - Blessing, M

PY - 1998

Y1 - 1998

N2 - Growth factors of the transforming growth factor-beta superfamily are involved in cutaneous wound healing. In this study we analyze the expression of the bone morphogenetic protein-6 (BMP-6) gene, a transforming growth factor-beta related gene, in skin wounds. In normal mouse skin high levels of BMP-6 mRNA and protein are expressed by postmitotic keratinocytes of stratified epidermis until day 6 after birth. BMP-6 expression is strongly reduced in adult epidermis with diminished mitotic activity. After skin injury we found large induction of BMP-6-specific RNA and protein in keratinocytes at the wound edge and keratinocytes of the newly formed epithelium as well as in fibroblast shaped cells in the wound bed. BMP-6-specific RNA was induced within 24 h after injury, whereas significant upregulation of BMP-6 on the protein level was detected only 2-3 d after injury. Protein was confined to outermost suprabasal epidermal layers, whereas BMP-6-specific RNA was distributed throughout all epidermal layers including basal keratinocytes and the leading edge of the migrating keratinocytes. We also detected high levels of BMP-6-specific RNA and protein in chronic human wounds of different etiology. In contrast to the overall distribution pattern of BMP-6-specific RNA, the protein was not detected in keratinocytes directly bordering the wound. In order to test the influence of BMP-6 abundance on the progress of wound healing, we analyzed the wound response of transgenic mice overexpressing BMP-6 in the epidermis. In these mice, reepitheliazation of skin wounds was significantly delayed, suggesting that strict spatial and temporal regulation of BMP-6 expression is necessary not only for formation but also for reestablishment of a fully differentiated epidermis.

AB - Growth factors of the transforming growth factor-beta superfamily are involved in cutaneous wound healing. In this study we analyze the expression of the bone morphogenetic protein-6 (BMP-6) gene, a transforming growth factor-beta related gene, in skin wounds. In normal mouse skin high levels of BMP-6 mRNA and protein are expressed by postmitotic keratinocytes of stratified epidermis until day 6 after birth. BMP-6 expression is strongly reduced in adult epidermis with diminished mitotic activity. After skin injury we found large induction of BMP-6-specific RNA and protein in keratinocytes at the wound edge and keratinocytes of the newly formed epithelium as well as in fibroblast shaped cells in the wound bed. BMP-6-specific RNA was induced within 24 h after injury, whereas significant upregulation of BMP-6 on the protein level was detected only 2-3 d after injury. Protein was confined to outermost suprabasal epidermal layers, whereas BMP-6-specific RNA was distributed throughout all epidermal layers including basal keratinocytes and the leading edge of the migrating keratinocytes. We also detected high levels of BMP-6-specific RNA and protein in chronic human wounds of different etiology. In contrast to the overall distribution pattern of BMP-6-specific RNA, the protein was not detected in keratinocytes directly bordering the wound. In order to test the influence of BMP-6 abundance on the progress of wound healing, we analyzed the wound response of transgenic mice overexpressing BMP-6 in the epidermis. In these mice, reepitheliazation of skin wounds was significantly delayed, suggesting that strict spatial and temporal regulation of BMP-6 expression is necessary not only for formation but also for reestablishment of a fully differentiated epidermis.

M3 - SCORING: Zeitschriftenaufsatz

VL - 111

SP - 1145

EP - 1152

JO - J INVEST DERMATOL

JF - J INVEST DERMATOL

SN - 0022-202X

IS - 6

M1 - 6

ER -