In vitro activity of cefiderocol against European Pseudomonas aeruginosa and Acinetobacter spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations

Standard

In vitro activity of cefiderocol against European Pseudomonas aeruginosa and Acinetobacter spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations. / ARTEMIS study group.

in: MICROBIOL SPECTR, Jahrgang 12, Nr. 4, 02.04.2024, S. e0383623.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{f96719e4bd6d42c5b5f95142c8fa7f13,
title = "In vitro activity of cefiderocol against European Pseudomonas aeruginosa and Acinetobacter spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations",
abstract = "UNLABELLED: Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-‍fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and β-lactam/β-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than ‍β‍-‍l‍a‍c‍t‍a‍m‍/‍β‍-‍l‍a‍c‍t‍a‍mase‍ inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. ‍aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), β-lactam/β-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-‍‍45.0%) or ‍ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acineto‍bacter ‍spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n ‍= 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common β-‍‍lactamase genes were metallo-β-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired β-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent β-lactam/β-lactamase inhibitor combinations common in first-line treatment of European non-fermenters.IMPORTANCE: This was the first study in which the in vitro activity of cefiderocol and non-licensed β-lactam/β-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and β-lactam/β-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with β-lactam/β-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.",
keywords = "Humans, Meropenem/pharmacology, Cefiderocol, beta-Lactamase Inhibitors/pharmacology, Pseudomonas aeruginosa, Lactams/pharmacology, Anti-Bacterial Agents/pharmacology, Cephalosporins/pharmacology, Pseudomonas Infections/drug therapy, Gram-Negative Bacteria, Acinetobacter, Microbial Sensitivity Tests, beta-Lactamases/genetics",
author = "{Santerre Henriksen}, Anne and Katy Jeannot and Antonio Oliver and Perry, {John D} and Pletz, {Mathias W} and Stefania Stefani and Ian Morrissey and Christopher Longshaw and {ARTEMIS study group}",
year = "2024",
month = apr,
day = "2",
doi = "10.1128/spectrum.03836-23",
language = "English",
volume = "12",
pages = "e0383623",
journal = "MICROBIOL SPECTR",
issn = "2165-0497",
publisher = "American Society for Microbiology",
number = "4",

}

RIS

TY - JOUR

T1 - In vitro activity of cefiderocol against European Pseudomonas aeruginosa and Acinetobacter spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations

AU - Santerre Henriksen, Anne

AU - Jeannot, Katy

AU - Oliver, Antonio

AU - Perry, John D

AU - Pletz, Mathias W

AU - Stefani, Stefania

AU - Morrissey, Ian

AU - Longshaw, Christopher

AU - ARTEMIS study group

PY - 2024/4/2

Y1 - 2024/4/2

N2 - UNLABELLED: Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-‍fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and β-lactam/β-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than ‍β‍-‍l‍a‍c‍t‍a‍m‍/‍β‍-‍l‍a‍c‍t‍a‍mase‍ inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. ‍aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), β-lactam/β-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-‍‍45.0%) or ‍ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acineto‍bacter ‍spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n ‍= 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common β-‍‍lactamase genes were metallo-β-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired β-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent β-lactam/β-lactamase inhibitor combinations common in first-line treatment of European non-fermenters.IMPORTANCE: This was the first study in which the in vitro activity of cefiderocol and non-licensed β-lactam/β-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and β-lactam/β-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with β-lactam/β-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.

AB - UNLABELLED: Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-‍fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and β-lactam/β-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than ‍β‍-‍l‍a‍c‍t‍a‍m‍/‍β‍-‍l‍a‍c‍t‍a‍mase‍ inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. ‍aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), β-lactam/β-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-‍‍45.0%) or ‍ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acineto‍bacter ‍spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n ‍= 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common β-‍‍lactamase genes were metallo-β-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired β-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent β-lactam/β-lactamase inhibitor combinations common in first-line treatment of European non-fermenters.IMPORTANCE: This was the first study in which the in vitro activity of cefiderocol and non-licensed β-lactam/β-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and β-lactam/β-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with β-lactam/β-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.

KW - Humans

KW - Meropenem/pharmacology

KW - Cefiderocol

KW - beta-Lactamase Inhibitors/pharmacology

KW - Pseudomonas aeruginosa

KW - Lactams/pharmacology

KW - Anti-Bacterial Agents/pharmacology

KW - Cephalosporins/pharmacology

KW - Pseudomonas Infections/drug therapy

KW - Gram-Negative Bacteria

KW - Acinetobacter

KW - Microbial Sensitivity Tests

KW - beta-Lactamases/genetics

U2 - 10.1128/spectrum.03836-23

DO - 10.1128/spectrum.03836-23

M3 - SCORING: Journal article

C2 - 38483164

VL - 12

SP - e0383623

JO - MICROBIOL SPECTR

JF - MICROBIOL SPECTR

SN - 2165-0497

IS - 4

ER -