Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type.

Standard

Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type. / Brandner, Johanna; Reidenbach, S; Kuhn, C; Franke, W W.

in: EUR J CELL BIOL, Jahrgang 75, Nr. 4, 4, 1998, S. 295-308.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{54f17689720243bc9d912caa5de93589,
title = "Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the {"}speckle{"} type.",
abstract = "We have identified, by cDNA cloning and immunodetection, a novel type of constitutive nuclear protein which occurs in diverse vertebrate species, from Xenopus laevis to man, in the form of two different gene products (79.1 kDa and 82.1 kDa in Xenopus, 81.6 kDa and 84.6 kDa in man), remarkably differing in pI (5.4-7.2). This type of protein is characterized by a carboxyterminal domain extremely rich in hydroxyamino acid residues, notably Ser (S), and tetrapeptide repeats of the type XSRS, and hence is termed {"}domain rich in serines{"} (DRS) protein. It has been immunolocalized exclusively in the cell nucleus such as in blood cell smears, cultured cells of very different origins and tissue sections, and has also been identified in Xenopus oocyte nuclei, both in sections and by biochemical methods in manually isolated nuclei. In many cell types the protein appears in two different physical states: (i) nuclear granules, identified as ribonucleoprotein (RNP) structures of the {"}speckle{"} category by colocalization and cofractionation with certain splicing factors and Sm-proteins, and (ii) in molecules diffusible throughout the nucleoplasm. During mitosis and also in meiosis (Xenopus eggs) the protein is transiently dispersed throughout the cytoplasm but rapidly reaccumulates into the reforming daughter-nuclei. In agreement with this, biochemical experiments have shown that during meiosis (eggs) the protein is recovered in a approximately 11-13S complex of the fraction of soluble cell components. We discuss general constitutive nuclear functions of this apparently ubiquitous and evolutionarily conserved protein.",
author = "Johanna Brandner and S Reidenbach and C Kuhn and Franke, {W W}",
year = "1998",
language = "Deutsch",
volume = "75",
pages = "295--308",
journal = "EUR J CELL BIOL",
issn = "0171-9335",
publisher = "Urban und Fischer Verlag GmbH und Co. KG",
number = "4",

}

RIS

TY - JOUR

T1 - Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type.

AU - Brandner, Johanna

AU - Reidenbach, S

AU - Kuhn, C

AU - Franke, W W

PY - 1998

Y1 - 1998

N2 - We have identified, by cDNA cloning and immunodetection, a novel type of constitutive nuclear protein which occurs in diverse vertebrate species, from Xenopus laevis to man, in the form of two different gene products (79.1 kDa and 82.1 kDa in Xenopus, 81.6 kDa and 84.6 kDa in man), remarkably differing in pI (5.4-7.2). This type of protein is characterized by a carboxyterminal domain extremely rich in hydroxyamino acid residues, notably Ser (S), and tetrapeptide repeats of the type XSRS, and hence is termed "domain rich in serines" (DRS) protein. It has been immunolocalized exclusively in the cell nucleus such as in blood cell smears, cultured cells of very different origins and tissue sections, and has also been identified in Xenopus oocyte nuclei, both in sections and by biochemical methods in manually isolated nuclei. In many cell types the protein appears in two different physical states: (i) nuclear granules, identified as ribonucleoprotein (RNP) structures of the "speckle" category by colocalization and cofractionation with certain splicing factors and Sm-proteins, and (ii) in molecules diffusible throughout the nucleoplasm. During mitosis and also in meiosis (Xenopus eggs) the protein is transiently dispersed throughout the cytoplasm but rapidly reaccumulates into the reforming daughter-nuclei. In agreement with this, biochemical experiments have shown that during meiosis (eggs) the protein is recovered in a approximately 11-13S complex of the fraction of soluble cell components. We discuss general constitutive nuclear functions of this apparently ubiquitous and evolutionarily conserved protein.

AB - We have identified, by cDNA cloning and immunodetection, a novel type of constitutive nuclear protein which occurs in diverse vertebrate species, from Xenopus laevis to man, in the form of two different gene products (79.1 kDa and 82.1 kDa in Xenopus, 81.6 kDa and 84.6 kDa in man), remarkably differing in pI (5.4-7.2). This type of protein is characterized by a carboxyterminal domain extremely rich in hydroxyamino acid residues, notably Ser (S), and tetrapeptide repeats of the type XSRS, and hence is termed "domain rich in serines" (DRS) protein. It has been immunolocalized exclusively in the cell nucleus such as in blood cell smears, cultured cells of very different origins and tissue sections, and has also been identified in Xenopus oocyte nuclei, both in sections and by biochemical methods in manually isolated nuclei. In many cell types the protein appears in two different physical states: (i) nuclear granules, identified as ribonucleoprotein (RNP) structures of the "speckle" category by colocalization and cofractionation with certain splicing factors and Sm-proteins, and (ii) in molecules diffusible throughout the nucleoplasm. During mitosis and also in meiosis (Xenopus eggs) the protein is transiently dispersed throughout the cytoplasm but rapidly reaccumulates into the reforming daughter-nuclei. In agreement with this, biochemical experiments have shown that during meiosis (eggs) the protein is recovered in a approximately 11-13S complex of the fraction of soluble cell components. We discuss general constitutive nuclear functions of this apparently ubiquitous and evolutionarily conserved protein.

M3 - SCORING: Zeitschriftenaufsatz

VL - 75

SP - 295

EP - 308

JO - EUR J CELL BIOL

JF - EUR J CELL BIOL

SN - 0171-9335

IS - 4

M1 - 4

ER -