How many human proteoforms are there?

Standard

How many human proteoforms are there? / Aebersold, Ruedi; Agar, Jeffrey N; Amster, I Jonathan; Baker, Mark S; Bertozzi, Carolyn R; Boja, Emily S; Costello, Catherine E; Cravatt, Benjamin F; Fenselau, Catherine; Garcia, Benjamin A; Ge, Ying; Gunawardena, Jeremy; Hendrickson, Ronald C; Hergenrother, Paul J; Huber, Christian G; Ivanov, Alexander R; Jensen, Ole N; Jewett, Michael C; Kelleher, Neil L; Kiessling, Laura L; Krogan, Nevan J; Larsen, Martin R; Loo, Joseph A; Ogorzalek Loo, Rachel R; Lundberg, Emma; MacCoss, Michael J; Mallick, Parag; Mootha, Vamsi K; Mrksich, Milan; Muir, Tom W; Patrie, Steven M; Pesavento, James J; Pitteri, Sharon J; Rodriguez, Henry; Saghatelian, Alan; Sandoval, Wendy; Schlüter, Hartmut; Sechi, Salvatore; Slavoff, Sarah A; Smith, Lloyd M; Snyder, Michael P; Thomas, Paul M; Uhlén, Mathias; Van Eyk, Jennifer E; Vidal, Marc; Walt, David R; White, Forest M; Williams, Evan R; Wohlschlager, Therese; Wysocki, Vicki H; Yates, Nathan A; Young, Nicolas L; Zhang, Bing.

in: NAT CHEM BIOL, Jahrgang 14, Nr. 3, 14.02.2018, S. 206-214.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

Aebersold, R, Agar, JN, Amster, IJ, Baker, MS, Bertozzi, CR, Boja, ES, Costello, CE, Cravatt, BF, Fenselau, C, Garcia, BA, Ge, Y, Gunawardena, J, Hendrickson, RC, Hergenrother, PJ, Huber, CG, Ivanov, AR, Jensen, ON, Jewett, MC, Kelleher, NL, Kiessling, LL, Krogan, NJ, Larsen, MR, Loo, JA, Ogorzalek Loo, RR, Lundberg, E, MacCoss, MJ, Mallick, P, Mootha, VK, Mrksich, M, Muir, TW, Patrie, SM, Pesavento, JJ, Pitteri, SJ, Rodriguez, H, Saghatelian, A, Sandoval, W, Schlüter, H, Sechi, S, Slavoff, SA, Smith, LM, Snyder, MP, Thomas, PM, Uhlén, M, Van Eyk, JE, Vidal, M, Walt, DR, White, FM, Williams, ER, Wohlschlager, T, Wysocki, VH, Yates, NA, Young, NL & Zhang, B 2018, 'How many human proteoforms are there?', NAT CHEM BIOL, Jg. 14, Nr. 3, S. 206-214. https://doi.org/10.1038/nchembio.2576

APA

Aebersold, R., Agar, J. N., Amster, I. J., Baker, M. S., Bertozzi, C. R., Boja, E. S., Costello, C. E., Cravatt, B. F., Fenselau, C., Garcia, B. A., Ge, Y., Gunawardena, J., Hendrickson, R. C., Hergenrother, P. J., Huber, C. G., Ivanov, A. R., Jensen, O. N., Jewett, M. C., Kelleher, N. L., ... Zhang, B. (2018). How many human proteoforms are there? NAT CHEM BIOL, 14(3), 206-214. https://doi.org/10.1038/nchembio.2576

Vancouver

Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES et al. How many human proteoforms are there? NAT CHEM BIOL. 2018 Feb 14;14(3):206-214. https://doi.org/10.1038/nchembio.2576

Bibtex

@article{d80f73016466485ebd8ee06bd7c8e667,
title = "How many human proteoforms are there?",
abstract = "Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, {"}How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?{"} We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.",
keywords = "Journal Article",
author = "Ruedi Aebersold and Agar, {Jeffrey N} and Amster, {I Jonathan} and Baker, {Mark S} and Bertozzi, {Carolyn R} and Boja, {Emily S} and Costello, {Catherine E} and Cravatt, {Benjamin F} and Catherine Fenselau and Garcia, {Benjamin A} and Ying Ge and Jeremy Gunawardena and Hendrickson, {Ronald C} and Hergenrother, {Paul J} and Huber, {Christian G} and Ivanov, {Alexander R} and Jensen, {Ole N} and Jewett, {Michael C} and Kelleher, {Neil L} and Kiessling, {Laura L} and Krogan, {Nevan J} and Larsen, {Martin R} and Loo, {Joseph A} and {Ogorzalek Loo}, {Rachel R} and Emma Lundberg and MacCoss, {Michael J} and Parag Mallick and Mootha, {Vamsi K} and Milan Mrksich and Muir, {Tom W} and Patrie, {Steven M} and Pesavento, {James J} and Pitteri, {Sharon J} and Henry Rodriguez and Alan Saghatelian and Wendy Sandoval and Hartmut Schl{\"u}ter and Salvatore Sechi and Slavoff, {Sarah A} and Smith, {Lloyd M} and Snyder, {Michael P} and Thomas, {Paul M} and Mathias Uhl{\'e}n and {Van Eyk}, {Jennifer E} and Marc Vidal and Walt, {David R} and White, {Forest M} and Williams, {Evan R} and Therese Wohlschlager and Wysocki, {Vicki H} and Yates, {Nathan A} and Young, {Nicolas L} and Bing Zhang",
year = "2018",
month = feb,
day = "14",
doi = "10.1038/nchembio.2576",
language = "English",
volume = "14",
pages = "206--214",
journal = "NAT CHEM BIOL",
issn = "1552-4450",
publisher = "NATURE PUBLISHING GROUP",
number = "3",

}

RIS

TY - JOUR

T1 - How many human proteoforms are there?

AU - Aebersold, Ruedi

AU - Agar, Jeffrey N

AU - Amster, I Jonathan

AU - Baker, Mark S

AU - Bertozzi, Carolyn R

AU - Boja, Emily S

AU - Costello, Catherine E

AU - Cravatt, Benjamin F

AU - Fenselau, Catherine

AU - Garcia, Benjamin A

AU - Ge, Ying

AU - Gunawardena, Jeremy

AU - Hendrickson, Ronald C

AU - Hergenrother, Paul J

AU - Huber, Christian G

AU - Ivanov, Alexander R

AU - Jensen, Ole N

AU - Jewett, Michael C

AU - Kelleher, Neil L

AU - Kiessling, Laura L

AU - Krogan, Nevan J

AU - Larsen, Martin R

AU - Loo, Joseph A

AU - Ogorzalek Loo, Rachel R

AU - Lundberg, Emma

AU - MacCoss, Michael J

AU - Mallick, Parag

AU - Mootha, Vamsi K

AU - Mrksich, Milan

AU - Muir, Tom W

AU - Patrie, Steven M

AU - Pesavento, James J

AU - Pitteri, Sharon J

AU - Rodriguez, Henry

AU - Saghatelian, Alan

AU - Sandoval, Wendy

AU - Schlüter, Hartmut

AU - Sechi, Salvatore

AU - Slavoff, Sarah A

AU - Smith, Lloyd M

AU - Snyder, Michael P

AU - Thomas, Paul M

AU - Uhlén, Mathias

AU - Van Eyk, Jennifer E

AU - Vidal, Marc

AU - Walt, David R

AU - White, Forest M

AU - Williams, Evan R

AU - Wohlschlager, Therese

AU - Wysocki, Vicki H

AU - Yates, Nathan A

AU - Young, Nicolas L

AU - Zhang, Bing

PY - 2018/2/14

Y1 - 2018/2/14

N2 - Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.

AB - Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.

KW - Journal Article

U2 - 10.1038/nchembio.2576

DO - 10.1038/nchembio.2576

M3 - SCORING: Journal article

C2 - 29443976

VL - 14

SP - 206

EP - 214

JO - NAT CHEM BIOL

JF - NAT CHEM BIOL

SN - 1552-4450

IS - 3

ER -