Fatigue testing of human flexor tendons using a customized 3D-printed clamping system

Standard

Fatigue testing of human flexor tendons using a customized 3D-printed clamping system. / Scholze, Mario; Safavi, Sarah; Ramezani, Maziar; Ondruschka, Benjamin; Hammer, Niels.

in: APPL SCI-BASEL, Jahrgang 12, Nr. 15, 7836, 2022.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{7715d86173f74331b12ca0b3394c5883,
title = "Fatigue testing of human flexor tendons using a customized 3D-printed clamping system",
abstract = "Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3D-printed clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and >260,000. S–N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R2 = 0.65, while the individual coefficients for tissues of single donors ranged between R2 = 0.54 and R2 = 0.88. The here-presented results demonstrate that S–N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technology.",
author = "Mario Scholze and Sarah Safavi and Maziar Ramezani and Benjamin Ondruschka and Niels Hammer",
year = "2022",
doi = "10.3390/app12157836",
language = "English",
volume = "12",
journal = "APPL SCI-BASEL",
issn = "2076-3417",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "15",

}

RIS

TY - JOUR

T1 - Fatigue testing of human flexor tendons using a customized 3D-printed clamping system

AU - Scholze, Mario

AU - Safavi, Sarah

AU - Ramezani, Maziar

AU - Ondruschka, Benjamin

AU - Hammer, Niels

PY - 2022

Y1 - 2022

N2 - Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3D-printed clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and >260,000. S–N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R2 = 0.65, while the individual coefficients for tissues of single donors ranged between R2 = 0.54 and R2 = 0.88. The here-presented results demonstrate that S–N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technology.

AB - Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3D-printed clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and >260,000. S–N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R2 = 0.65, while the individual coefficients for tissues of single donors ranged between R2 = 0.54 and R2 = 0.88. The here-presented results demonstrate that S–N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technology.

U2 - 10.3390/app12157836

DO - 10.3390/app12157836

M3 - SCORING: Journal article

VL - 12

JO - APPL SCI-BASEL

JF - APPL SCI-BASEL

SN - 2076-3417

IS - 15

M1 - 7836

ER -