Effect of geometric distortion correction on thickness and volume measurements of cortical parcellations in 3D T1w gradient echo sequences

Standard

Effect of geometric distortion correction on thickness and volume measurements of cortical parcellations in 3D T1w gradient echo sequences. / Thaler, Christian; Sedlacik, Jan; Forkert, Nils D; Stellmann, Jan-Patrick; Schön, Gerhard; Fiehler, Jens; Gellißen, Susanne.

in: PLOS ONE, Jahrgang 18, Nr. 4, e0284440, 2023.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{ead72832ef2242ec93ee87c2a737446c,
title = "Effect of geometric distortion correction on thickness and volume measurements of cortical parcellations in 3D T1w gradient echo sequences",
abstract = "OBJECTIVE: Automated brain volumetric analysis based on high-resolution T1-weighted MRI datasets is a frequently used tool in neuroimaging for early detection, diagnosis, and monitoring of various neurological diseases. However, image distortions can corrupt and bias the analysis. The aim of this study was to explore the variability of brain volumetric analysis due to gradient distortions and to investigate the effect of distortion correction methods implemented on commercial scanners.MATERIAL AND METHODS: 36 healthy volunteers underwent brain imaging using a 3T magnetic resonance imaging (MRI) scanner, including a high-resolution 3D T1-weighted sequence. For all participants, each T1-weighted image was reconstructed directly on the vendor workstation with (DC) and without (nDC) distortion correction. For each participant's set of DC and nDC images, FreeSurfer was used for the determination of regional cortical thickness and volume.RESULTS: Overall, significant differences were found in 12 cortical ROIs comparing the volumes of the DC and nDC data and in 19 cortical ROIs comparing the thickness of the DC and nDC data. The most pronounced differences for cortical thickness were found in the precentral gyrus, the lateral occipital and postcentral ROI (2.69, -2.91% and -2.79%, respectively) while cortical volumes differed most prominently in the paracentral, the pericalcarine and lateral occipital ROI (5.52%, -5.40% and -5.11%, respectively).CONCLUSION: Correcting for gradient non-linearities can have significant influence on volumetric analysis of cortical thickness and volume. Since the distortion correction is an automatic feature of the MR scanner, it should be stated by each study that applies volumetric analysis which images were used.",
keywords = "Humans, Magnetic Resonance Imaging/methods, Neuroimaging, Imaging, Three-Dimensional/methods, Brain, Nervous System Diseases",
author = "Christian Thaler and Jan Sedlacik and Forkert, {Nils D} and Jan-Patrick Stellmann and Gerhard Sch{\"o}n and Jens Fiehler and Susanne Gelli{\ss}en",
note = "Copyright: {\textcopyright} 2023 Thaler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",
year = "2023",
doi = "10.1371/journal.pone.0284440",
language = "English",
volume = "18",
journal = "PLOS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "4",

}

RIS

TY - JOUR

T1 - Effect of geometric distortion correction on thickness and volume measurements of cortical parcellations in 3D T1w gradient echo sequences

AU - Thaler, Christian

AU - Sedlacik, Jan

AU - Forkert, Nils D

AU - Stellmann, Jan-Patrick

AU - Schön, Gerhard

AU - Fiehler, Jens

AU - Gellißen, Susanne

N1 - Copyright: © 2023 Thaler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PY - 2023

Y1 - 2023

N2 - OBJECTIVE: Automated brain volumetric analysis based on high-resolution T1-weighted MRI datasets is a frequently used tool in neuroimaging for early detection, diagnosis, and monitoring of various neurological diseases. However, image distortions can corrupt and bias the analysis. The aim of this study was to explore the variability of brain volumetric analysis due to gradient distortions and to investigate the effect of distortion correction methods implemented on commercial scanners.MATERIAL AND METHODS: 36 healthy volunteers underwent brain imaging using a 3T magnetic resonance imaging (MRI) scanner, including a high-resolution 3D T1-weighted sequence. For all participants, each T1-weighted image was reconstructed directly on the vendor workstation with (DC) and without (nDC) distortion correction. For each participant's set of DC and nDC images, FreeSurfer was used for the determination of regional cortical thickness and volume.RESULTS: Overall, significant differences were found in 12 cortical ROIs comparing the volumes of the DC and nDC data and in 19 cortical ROIs comparing the thickness of the DC and nDC data. The most pronounced differences for cortical thickness were found in the precentral gyrus, the lateral occipital and postcentral ROI (2.69, -2.91% and -2.79%, respectively) while cortical volumes differed most prominently in the paracentral, the pericalcarine and lateral occipital ROI (5.52%, -5.40% and -5.11%, respectively).CONCLUSION: Correcting for gradient non-linearities can have significant influence on volumetric analysis of cortical thickness and volume. Since the distortion correction is an automatic feature of the MR scanner, it should be stated by each study that applies volumetric analysis which images were used.

AB - OBJECTIVE: Automated brain volumetric analysis based on high-resolution T1-weighted MRI datasets is a frequently used tool in neuroimaging for early detection, diagnosis, and monitoring of various neurological diseases. However, image distortions can corrupt and bias the analysis. The aim of this study was to explore the variability of brain volumetric analysis due to gradient distortions and to investigate the effect of distortion correction methods implemented on commercial scanners.MATERIAL AND METHODS: 36 healthy volunteers underwent brain imaging using a 3T magnetic resonance imaging (MRI) scanner, including a high-resolution 3D T1-weighted sequence. For all participants, each T1-weighted image was reconstructed directly on the vendor workstation with (DC) and without (nDC) distortion correction. For each participant's set of DC and nDC images, FreeSurfer was used for the determination of regional cortical thickness and volume.RESULTS: Overall, significant differences were found in 12 cortical ROIs comparing the volumes of the DC and nDC data and in 19 cortical ROIs comparing the thickness of the DC and nDC data. The most pronounced differences for cortical thickness were found in the precentral gyrus, the lateral occipital and postcentral ROI (2.69, -2.91% and -2.79%, respectively) while cortical volumes differed most prominently in the paracentral, the pericalcarine and lateral occipital ROI (5.52%, -5.40% and -5.11%, respectively).CONCLUSION: Correcting for gradient non-linearities can have significant influence on volumetric analysis of cortical thickness and volume. Since the distortion correction is an automatic feature of the MR scanner, it should be stated by each study that applies volumetric analysis which images were used.

KW - Humans

KW - Magnetic Resonance Imaging/methods

KW - Neuroimaging

KW - Imaging, Three-Dimensional/methods

KW - Brain

KW - Nervous System Diseases

U2 - 10.1371/journal.pone.0284440

DO - 10.1371/journal.pone.0284440

M3 - SCORING: Journal article

C2 - 37058493

VL - 18

JO - PLOS ONE

JF - PLOS ONE

SN - 1932-6203

IS - 4

M1 - e0284440

ER -