Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke.

Standard

Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. / Thomalla, Götz; Glauche, Volkmar; Koch, Martin A; Beaulieu, Christian; Weiller, Cornelius; Röther, Joachim.

in: NEUROIMAGE, Jahrgang 22, Nr. 4, 4, 2004, S. 1767-1774.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{94ff7f64a9ee4e94874add9d3ff528c5,
title = "Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke.",
abstract = "We used diffusion tensor imaging (DTI) to assess Wallerian degeneration of the pyramidal tract within the first 2 weeks after ischemic stroke, and correlated the extent of Wallerian degeneration with the motor deficit. Nine patients with middle cerebral artery stroke were examined 2-16 days after stroke by DTI and T2-weighted MRI. We measured fractional anisotropy (FA), averaged diffusivity (Dav), eigenvalues of the diffusion tensor and T2-weighted signal in the cerebral peduncle and compared these values between the affected and the unaffected side and between patients and six controls. FA was significantly reduced on the affected side compared to the unaffected side and compared to the control group. The largest eigenvalue was reduced, whereas the smallest eigenvalue was elevated on the affected side. There was no significant difference in T2-weighted signal and Dav. The decrease of anisotropy correlated positively with the motor deficit at the time of DTI study and 90 days after stroke. The reduction of anisotropy mirrors the disintegration of axonal structures, as it occurs in the early phase of Wallerian degeneration. DTI detects changes of water diffusion related to beginning pyramidal tract degeneration within the first 2 weeks after stroke that are not yet visible in conventional T2-weighted or orientationally averaged diffusion weighted MRI. We demonstrated for the first time a correlation of early DTI findings of pyramidal tract damage with the motor deficit. DTI can help prognosing recovery of motor function after stroke within the early subacute phase.",
author = "G{\"o}tz Thomalla and Volkmar Glauche and Koch, {Martin A} and Christian Beaulieu and Cornelius Weiller and Joachim R{\"o}ther",
year = "2004",
language = "Deutsch",
volume = "22",
pages = "1767--1774",
journal = "NEUROIMAGE",
issn = "1053-8119",
publisher = "Academic Press",
number = "4",

}

RIS

TY - JOUR

T1 - Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke.

AU - Thomalla, Götz

AU - Glauche, Volkmar

AU - Koch, Martin A

AU - Beaulieu, Christian

AU - Weiller, Cornelius

AU - Röther, Joachim

PY - 2004

Y1 - 2004

N2 - We used diffusion tensor imaging (DTI) to assess Wallerian degeneration of the pyramidal tract within the first 2 weeks after ischemic stroke, and correlated the extent of Wallerian degeneration with the motor deficit. Nine patients with middle cerebral artery stroke were examined 2-16 days after stroke by DTI and T2-weighted MRI. We measured fractional anisotropy (FA), averaged diffusivity (Dav), eigenvalues of the diffusion tensor and T2-weighted signal in the cerebral peduncle and compared these values between the affected and the unaffected side and between patients and six controls. FA was significantly reduced on the affected side compared to the unaffected side and compared to the control group. The largest eigenvalue was reduced, whereas the smallest eigenvalue was elevated on the affected side. There was no significant difference in T2-weighted signal and Dav. The decrease of anisotropy correlated positively with the motor deficit at the time of DTI study and 90 days after stroke. The reduction of anisotropy mirrors the disintegration of axonal structures, as it occurs in the early phase of Wallerian degeneration. DTI detects changes of water diffusion related to beginning pyramidal tract degeneration within the first 2 weeks after stroke that are not yet visible in conventional T2-weighted or orientationally averaged diffusion weighted MRI. We demonstrated for the first time a correlation of early DTI findings of pyramidal tract damage with the motor deficit. DTI can help prognosing recovery of motor function after stroke within the early subacute phase.

AB - We used diffusion tensor imaging (DTI) to assess Wallerian degeneration of the pyramidal tract within the first 2 weeks after ischemic stroke, and correlated the extent of Wallerian degeneration with the motor deficit. Nine patients with middle cerebral artery stroke were examined 2-16 days after stroke by DTI and T2-weighted MRI. We measured fractional anisotropy (FA), averaged diffusivity (Dav), eigenvalues of the diffusion tensor and T2-weighted signal in the cerebral peduncle and compared these values between the affected and the unaffected side and between patients and six controls. FA was significantly reduced on the affected side compared to the unaffected side and compared to the control group. The largest eigenvalue was reduced, whereas the smallest eigenvalue was elevated on the affected side. There was no significant difference in T2-weighted signal and Dav. The decrease of anisotropy correlated positively with the motor deficit at the time of DTI study and 90 days after stroke. The reduction of anisotropy mirrors the disintegration of axonal structures, as it occurs in the early phase of Wallerian degeneration. DTI detects changes of water diffusion related to beginning pyramidal tract degeneration within the first 2 weeks after stroke that are not yet visible in conventional T2-weighted or orientationally averaged diffusion weighted MRI. We demonstrated for the first time a correlation of early DTI findings of pyramidal tract damage with the motor deficit. DTI can help prognosing recovery of motor function after stroke within the early subacute phase.

M3 - SCORING: Zeitschriftenaufsatz

VL - 22

SP - 1767

EP - 1774

JO - NEUROIMAGE

JF - NEUROIMAGE

SN - 1053-8119

IS - 4

M1 - 4

ER -