Differential regulation of AMPK activation in leptin- and creatine-deficient mice

  • Malte Stockebrand
  • Kathrin Sauter
  • Axel Neu
  • Dirk Isbrandt
  • Chi-un Choe

Abstract

AMP-activated protein kinase (AMPK) is a key sensor and regulator of energy homeostasis. Previously, we demonstrated that intracellular energy depletion by L-arginine:glycine amidinotransferase (AGAT) deficiency resulted in AMPK activation and protected from metabolic syndrome. In the present study, we show tissue-specific leptin dependence of AMPK activation by energy depletion. We investigated leptin-dependent AMPK regulation in AGAT- and leptin-deficient (d/d ob/ob) mice. Like ob/ob mice, but unlike d/d mice, d/d ob/ob mice were obese and glucose intolerant. Therefore, leptin is a prerequisite for resistance to metabolic syndrome in AGAT-deficient mice. Quantitative Western blots revealed a 4-fold increase in AMPK activation in skeletal muscle of d/d ob/ob mice (P<0.001). However, AMPK activation was absent in white adipose tissue (WAT) and liver. Compared with blood glucose levels in ob/ob mice, fasting levels were still reduced and therefore did not show leptin dependence (wild-type, 79.4±3.9 mg/dl; d/d, 68.4±3.2 mg/dl; P<0.05). In ob/ob mice and wild-type mice, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), in combination with leptin, augmented glucose tolerance compared with AICAR alone, whereas no improvement was found under conditions of high-fat-diet feeding. These findings reveal a previously unknown synergistic AMPK activation by leptin and intracellular energy depletion, suggesting that AMPK activation can be therapeutically effective in metabolic syndrome only if leptin sensitivity is preserved.

Bibliografische Daten

OriginalspracheEnglisch
ISSN0892-6638
DOIs
StatusVeröffentlicht - 01.10.2013
PubMed 23825223