Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight.

Standard

Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight. / Vierk, Ricardo; Pflueger, H J; Duch, C.

in: J COMP PHYSIOL A, Jahrgang 195, Nr. 3, 3, 2009, S. 265-277.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{48d3b745b4d24c01bd66c69cd3ec07aa,
title = "Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight.",
abstract = "The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.",
author = "Ricardo Vierk and Pflueger, {H J} and C Duch",
year = "2009",
language = "Deutsch",
volume = "195",
pages = "265--277",
journal = "J COMP PHYSIOL A",
issn = "0340-7594",
publisher = "Springer",
number = "3",

}

RIS

TY - JOUR

T1 - Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight.

AU - Vierk, Ricardo

AU - Pflueger, H J

AU - Duch, C

PY - 2009

Y1 - 2009

N2 - The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.

AB - The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.

M3 - SCORING: Zeitschriftenaufsatz

VL - 195

SP - 265

EP - 277

JO - J COMP PHYSIOL A

JF - J COMP PHYSIOL A

SN - 0340-7594

IS - 3

M1 - 3

ER -