Coupling of voltage-sensors to the channel pore: a comparative view.

Standard

Coupling of voltage-sensors to the channel pore: a comparative view. / Vardanyan, Vitya; Pongs, Olaf.

in: FRONT PHARMACOL, Jahrgang 3, 2012, S. 145.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{d62a3b9001ed4af28b3bb2f4df4c61e3,
title = "Coupling of voltage-sensors to the channel pore: a comparative view.",
abstract = "The activation of voltage-dependent ion channels is initiated by potential-induced conformational rearrangements in the voltage-sensor domains that propagates to the pore domain (PD) and finally opens the ion conduction pathway. In potassium channels voltage-sensors are covalently linked to the pore via S4-S5 linkers at the cytoplasmic site of the PD. Transformation of membrane electric energy into the mechanical work required for the opening or closing of the channel pore is achieved through an electromechanical coupling mechanism, which involves local interaction between residues in S4-S5 linker and pore-forming alpha helices. In this review we discuss present knowledge and open questions related to the electromechanical coupling mechanism in most intensively studied voltage-gated Shaker potassium channel and compare structure-functional aspects of coupling with those observed in distantly related ion channels. We focus particularly on the role of electromechanical coupling in modulation of the constitutive conductance of ion channels.",
author = "Vitya Vardanyan and Olaf Pongs",
year = "2012",
doi = "10.3389/fphar.2012.00145",
language = "English",
volume = "3",
pages = "145",
journal = "FRONT PHARMACOL",
issn = "1663-9812",
publisher = "Frontiers Media S. A.",

}

RIS

TY - JOUR

T1 - Coupling of voltage-sensors to the channel pore: a comparative view.

AU - Vardanyan, Vitya

AU - Pongs, Olaf

PY - 2012

Y1 - 2012

N2 - The activation of voltage-dependent ion channels is initiated by potential-induced conformational rearrangements in the voltage-sensor domains that propagates to the pore domain (PD) and finally opens the ion conduction pathway. In potassium channels voltage-sensors are covalently linked to the pore via S4-S5 linkers at the cytoplasmic site of the PD. Transformation of membrane electric energy into the mechanical work required for the opening or closing of the channel pore is achieved through an electromechanical coupling mechanism, which involves local interaction between residues in S4-S5 linker and pore-forming alpha helices. In this review we discuss present knowledge and open questions related to the electromechanical coupling mechanism in most intensively studied voltage-gated Shaker potassium channel and compare structure-functional aspects of coupling with those observed in distantly related ion channels. We focus particularly on the role of electromechanical coupling in modulation of the constitutive conductance of ion channels.

AB - The activation of voltage-dependent ion channels is initiated by potential-induced conformational rearrangements in the voltage-sensor domains that propagates to the pore domain (PD) and finally opens the ion conduction pathway. In potassium channels voltage-sensors are covalently linked to the pore via S4-S5 linkers at the cytoplasmic site of the PD. Transformation of membrane electric energy into the mechanical work required for the opening or closing of the channel pore is achieved through an electromechanical coupling mechanism, which involves local interaction between residues in S4-S5 linker and pore-forming alpha helices. In this review we discuss present knowledge and open questions related to the electromechanical coupling mechanism in most intensively studied voltage-gated Shaker potassium channel and compare structure-functional aspects of coupling with those observed in distantly related ion channels. We focus particularly on the role of electromechanical coupling in modulation of the constitutive conductance of ion channels.

U2 - 10.3389/fphar.2012.00145

DO - 10.3389/fphar.2012.00145

M3 - SCORING: Journal article

VL - 3

SP - 145

JO - FRONT PHARMACOL

JF - FRONT PHARMACOL

SN - 1663-9812

ER -