Contribution of B cells and antibody to cardiac allograft vasculopathy.

Standard

Contribution of B cells and antibody to cardiac allograft vasculopathy. / Gareau, Alison; Hirsch, Gregory M; Lee, Tim D G; Nashan, Björn.

in: TRANSPLANTATION, Jahrgang 88, Nr. 4, 4, 2009, S. 470-477.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Gareau A, Hirsch GM, Lee TDG, Nashan B. Contribution of B cells and antibody to cardiac allograft vasculopathy. TRANSPLANTATION. 2009;88(4):470-477. 4.

Bibtex

@article{620b36b22e86438585963268824323b0,
title = "Contribution of B cells and antibody to cardiac allograft vasculopathy.",
abstract = "BACKGROUND: The aim of this study was to determine the role of alloantibody in the development of cardiac allograft vasculopathy (AV). AV is the main pathologic indicator of chronic cardiac graft rejection resulting in graft loss at 10 years posttransplant. In AV, a neointimal lesion forms resulting in luminal occlusion and damage to the transplanted organ. AV is T-cell mediated, but the role played by B cells and antibody in AV development has been controversial. No studies have been conducted in the presence of a clinically relevant immunosuppressant. In our study, we use cyclosporin A, a calcineurin inhibitor. METHODS: Two models of B-cell deficiency were used as recipients of a C3H/HeJ abdominal aortic graft; grafts were harvested at 8 weeks. T- and B-cell immunodeficient mice (RAG1-/-) received passively transferred anti-C3H antibody, raised in B6 mice. Cyclosporin A was administered daily to both control and experimental groups. Alpha-actin staining was used to identify myofibroblasts in the neointima. RESULTS: Lesions in B-cell-deficient B6 mice were not significantly different in size from those of control mice. Lesions in both B-cell-deficient and wild-type mice showed similar levels of alpha-actin positivity. Passive transfer of antibody to RAG1-/- mice resulted in small, alpha-actin-positive lesions. CONCLUSIONS: B cells are not required for the development of AV, but the presence of an alloantibody can contribute to AV. We hypothesize that the alloantibody mediates AV by initiating complement-mediated killing of smooth muscle cells, based on an in vitro work. Of interest, we found that the neointimal lesions of B-cell-deficient mice and mice that received antibody showed the presence of alpha-actin in myofibroblasts.",
author = "Alison Gareau and Hirsch, {Gregory M} and Lee, {Tim D G} and Bj{\"o}rn Nashan",
year = "2009",
language = "Deutsch",
volume = "88",
pages = "470--477",
journal = "TRANSPLANTATION",
issn = "0041-1337",
publisher = "Lippincott Williams and Wilkins",
number = "4",

}

RIS

TY - JOUR

T1 - Contribution of B cells and antibody to cardiac allograft vasculopathy.

AU - Gareau, Alison

AU - Hirsch, Gregory M

AU - Lee, Tim D G

AU - Nashan, Björn

PY - 2009

Y1 - 2009

N2 - BACKGROUND: The aim of this study was to determine the role of alloantibody in the development of cardiac allograft vasculopathy (AV). AV is the main pathologic indicator of chronic cardiac graft rejection resulting in graft loss at 10 years posttransplant. In AV, a neointimal lesion forms resulting in luminal occlusion and damage to the transplanted organ. AV is T-cell mediated, but the role played by B cells and antibody in AV development has been controversial. No studies have been conducted in the presence of a clinically relevant immunosuppressant. In our study, we use cyclosporin A, a calcineurin inhibitor. METHODS: Two models of B-cell deficiency were used as recipients of a C3H/HeJ abdominal aortic graft; grafts were harvested at 8 weeks. T- and B-cell immunodeficient mice (RAG1-/-) received passively transferred anti-C3H antibody, raised in B6 mice. Cyclosporin A was administered daily to both control and experimental groups. Alpha-actin staining was used to identify myofibroblasts in the neointima. RESULTS: Lesions in B-cell-deficient B6 mice were not significantly different in size from those of control mice. Lesions in both B-cell-deficient and wild-type mice showed similar levels of alpha-actin positivity. Passive transfer of antibody to RAG1-/- mice resulted in small, alpha-actin-positive lesions. CONCLUSIONS: B cells are not required for the development of AV, but the presence of an alloantibody can contribute to AV. We hypothesize that the alloantibody mediates AV by initiating complement-mediated killing of smooth muscle cells, based on an in vitro work. Of interest, we found that the neointimal lesions of B-cell-deficient mice and mice that received antibody showed the presence of alpha-actin in myofibroblasts.

AB - BACKGROUND: The aim of this study was to determine the role of alloantibody in the development of cardiac allograft vasculopathy (AV). AV is the main pathologic indicator of chronic cardiac graft rejection resulting in graft loss at 10 years posttransplant. In AV, a neointimal lesion forms resulting in luminal occlusion and damage to the transplanted organ. AV is T-cell mediated, but the role played by B cells and antibody in AV development has been controversial. No studies have been conducted in the presence of a clinically relevant immunosuppressant. In our study, we use cyclosporin A, a calcineurin inhibitor. METHODS: Two models of B-cell deficiency were used as recipients of a C3H/HeJ abdominal aortic graft; grafts were harvested at 8 weeks. T- and B-cell immunodeficient mice (RAG1-/-) received passively transferred anti-C3H antibody, raised in B6 mice. Cyclosporin A was administered daily to both control and experimental groups. Alpha-actin staining was used to identify myofibroblasts in the neointima. RESULTS: Lesions in B-cell-deficient B6 mice were not significantly different in size from those of control mice. Lesions in both B-cell-deficient and wild-type mice showed similar levels of alpha-actin positivity. Passive transfer of antibody to RAG1-/- mice resulted in small, alpha-actin-positive lesions. CONCLUSIONS: B cells are not required for the development of AV, but the presence of an alloantibody can contribute to AV. We hypothesize that the alloantibody mediates AV by initiating complement-mediated killing of smooth muscle cells, based on an in vitro work. Of interest, we found that the neointimal lesions of B-cell-deficient mice and mice that received antibody showed the presence of alpha-actin in myofibroblasts.

M3 - SCORING: Zeitschriftenaufsatz

VL - 88

SP - 470

EP - 477

JO - TRANSPLANTATION

JF - TRANSPLANTATION

SN - 0041-1337

IS - 4

M1 - 4

ER -