Computationale Neuroanatomie und Mikrostrukturbildgebung mit der Magnetresonanztomographie

Abstract

BACKGROUND: Current computational neuroanatomy focuses on morphological measurements of the brain using standard magnetic resonance imaging (MRI) techniques. In comparison quantitative MRI (qMRI) typically provides a better tissue contrast and also greatly improves the sensitivity and specificity with respect to the microstructural characteristics of tissue.

OBJECTIVE: Current methodological developments in qMRI are presented, which go beyond morphology because this provides standardized measurements of the microstructure of the brain. The concept of in-vivo histology is introduced, based on biophysical modelling of qMRI data (hMRI) for determination of quantitative histology-like markers of the microstructure.

RESULTS: The qMRI metrics can be used as direct biomarkers of the microstructural mechanisms driving observed morphological findings. The hMRI metrics utilize biophysical models of the MRI signal in order to determine 3‑dimensional maps of histology-like measurements in the white matter.

CONCLUSION: Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both scientific and clinical applications. Both approaches improve the comparability across sites and time points, facilitate multicenter and longitudinal studies as well as standardized diagnostics. The hMRI is expected to shed new light on the relationship between brain microstructure, function and behavior both in health and disease. In the future hMRI will play an indispensable role in the field of computational neuroanatomy.

Bibliografische Daten

Titel in ÜbersetzungComputational neuroanatomy and microstructure imaging using magnetic resonance imaging
OriginalspracheDeutsch
ISSN0028-2804
DOIs
StatusVeröffentlicht - 08.2017
PubMed 28721539